Xi-Yang Yu, Xue Su, Meng-Jia Xi, Zheng-Qing Huang, Chun-Ran Chang
{"title":"自然表面受挫路易斯对:概念及其他","authors":"Xi-Yang Yu, Xue Su, Meng-Jia Xi, Zheng-Qing Huang, Chun-Ran Chang","doi":"10.1002/asia.202401155","DOIUrl":null,"url":null,"abstract":"<p><p>The reusable and separable surface frustrated Lewis pairs (SFLPs) open up a novel approach to efficient small-molecule activation and conversion in heterogeneous catalysis. However, SFLPs have only been reported on limited systems due to the difficulty in the design and synthesis process. The inherent Lewis pairs on various solid materials offer promising opportunities for finding natural SFLPs, providing a straightforward and efficient strategy to overcome the current limitations. In this concept, we retrospect the concept of natural SFLPs proposed on wurtzite crystal surfaces and identify other natural SFLPs that probably exist on solid materials, including reduced oxide surfaces, corrugated graphene, and perovskite quantum dots. Having focused on the reactivity of natural SFLPs in small-molecule activation, we discuss the current challenges, propose possible research directions, and highlight potential applications of natural SFLPs in heterogeneous catalysis.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401155"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Surface Frustrated Lewis Pairs: The Concept and Beyond.\",\"authors\":\"Xi-Yang Yu, Xue Su, Meng-Jia Xi, Zheng-Qing Huang, Chun-Ran Chang\",\"doi\":\"10.1002/asia.202401155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reusable and separable surface frustrated Lewis pairs (SFLPs) open up a novel approach to efficient small-molecule activation and conversion in heterogeneous catalysis. However, SFLPs have only been reported on limited systems due to the difficulty in the design and synthesis process. The inherent Lewis pairs on various solid materials offer promising opportunities for finding natural SFLPs, providing a straightforward and efficient strategy to overcome the current limitations. In this concept, we retrospect the concept of natural SFLPs proposed on wurtzite crystal surfaces and identify other natural SFLPs that probably exist on solid materials, including reduced oxide surfaces, corrugated graphene, and perovskite quantum dots. Having focused on the reactivity of natural SFLPs in small-molecule activation, we discuss the current challenges, propose possible research directions, and highlight potential applications of natural SFLPs in heterogeneous catalysis.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":\" \",\"pages\":\"e202401155\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401155\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401155","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Natural Surface Frustrated Lewis Pairs: The Concept and Beyond.
The reusable and separable surface frustrated Lewis pairs (SFLPs) open up a novel approach to efficient small-molecule activation and conversion in heterogeneous catalysis. However, SFLPs have only been reported on limited systems due to the difficulty in the design and synthesis process. The inherent Lewis pairs on various solid materials offer promising opportunities for finding natural SFLPs, providing a straightforward and efficient strategy to overcome the current limitations. In this concept, we retrospect the concept of natural SFLPs proposed on wurtzite crystal surfaces and identify other natural SFLPs that probably exist on solid materials, including reduced oxide surfaces, corrugated graphene, and perovskite quantum dots. Having focused on the reactivity of natural SFLPs in small-molecule activation, we discuss the current challenges, propose possible research directions, and highlight potential applications of natural SFLPs in heterogeneous catalysis.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).