硅上二维过渡金属二卤化物的串联光伏技术

IF 6.7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zekun Hu, Sudong Wang, Jason Lynch, Deep Jariwala
{"title":"硅上二维过渡金属二卤化物的串联光伏技术","authors":"Zekun Hu, Sudong Wang, Jason Lynch, Deep Jariwala","doi":"10.1021/acsphotonics.4c00982","DOIUrl":null,"url":null,"abstract":"The demand for high-efficiency photovoltaic systems necessitates innovations that transcend the efficiency limitations of single-junction solar cells. This study investigates a tandem photovoltaic architecture comprising a top-cell with a transition metal dichalcogenide (TMDC) superlattice absorber and a bottom-cell of crystalline silicon (c-Si), focusing on optimizing the light absorption and electrical performance of the combined structure. Through the transfer matrix method and electrical simulations, we optimized the geometry of the superlattice, determining that a six-layer MoSe<sub>2</sub> configuration with a 40 nm SiO<sub>2</sub> antireflective layer maximizes photon absorption while mitigating additional weight and preserving the cell’s structural integrity. The results show that the optimized TMDC superlattice significantly improves the power conversion efficiency (PCE) of the tandem design to 30.94%, an increase of 7.66% over the original single-junction c-Si solar cell’s efficiency. This advancement illustrates the potential of TMDC materials in next-generation solar cells and presents a promising avenue for the development of highly efficient, tandem photovoltaic systems vis van der Waals integration of the to-cell on Si.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"31 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tandem Photovoltaics from 2D Transition Metal Dichalcogenides on Silicon\",\"authors\":\"Zekun Hu, Sudong Wang, Jason Lynch, Deep Jariwala\",\"doi\":\"10.1021/acsphotonics.4c00982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for high-efficiency photovoltaic systems necessitates innovations that transcend the efficiency limitations of single-junction solar cells. This study investigates a tandem photovoltaic architecture comprising a top-cell with a transition metal dichalcogenide (TMDC) superlattice absorber and a bottom-cell of crystalline silicon (c-Si), focusing on optimizing the light absorption and electrical performance of the combined structure. Through the transfer matrix method and electrical simulations, we optimized the geometry of the superlattice, determining that a six-layer MoSe<sub>2</sub> configuration with a 40 nm SiO<sub>2</sub> antireflective layer maximizes photon absorption while mitigating additional weight and preserving the cell’s structural integrity. The results show that the optimized TMDC superlattice significantly improves the power conversion efficiency (PCE) of the tandem design to 30.94%, an increase of 7.66% over the original single-junction c-Si solar cell’s efficiency. This advancement illustrates the potential of TMDC materials in next-generation solar cells and presents a promising avenue for the development of highly efficient, tandem photovoltaic systems vis van der Waals integration of the to-cell on Si.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c00982\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c00982","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对高效率光伏系统的需求要求创新技术能够超越单结太阳能电池的效率限制。本研究调查了一种串联光伏结构,该结构由带有过渡金属二钙化物(TMDC)超晶格吸收器的顶部电池和晶体硅(c-Si)底部电池组成,重点是优化组合结构的光吸收和电气性能。通过传递矩阵法和电学模拟,我们优化了超晶格的几何形状,确定了带有 40 nm SiO2 抗反射层的六层 MoSe2 配置可最大限度地吸收光子,同时减轻额外重量并保持电池的结构完整性。结果表明,优化的 TMDC 超晶格将串联设计的功率转换效率(PCE)显著提高到 30.94%,比原始单结晶体硅太阳能电池的效率提高了 7.66%。这一进展说明了 TMDC 材料在下一代太阳能电池中的应用潜力,并为开发高效串联光伏系统提供了一条很有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tandem Photovoltaics from 2D Transition Metal Dichalcogenides on Silicon

Tandem Photovoltaics from 2D Transition Metal Dichalcogenides on Silicon
The demand for high-efficiency photovoltaic systems necessitates innovations that transcend the efficiency limitations of single-junction solar cells. This study investigates a tandem photovoltaic architecture comprising a top-cell with a transition metal dichalcogenide (TMDC) superlattice absorber and a bottom-cell of crystalline silicon (c-Si), focusing on optimizing the light absorption and electrical performance of the combined structure. Through the transfer matrix method and electrical simulations, we optimized the geometry of the superlattice, determining that a six-layer MoSe2 configuration with a 40 nm SiO2 antireflective layer maximizes photon absorption while mitigating additional weight and preserving the cell’s structural integrity. The results show that the optimized TMDC superlattice significantly improves the power conversion efficiency (PCE) of the tandem design to 30.94%, an increase of 7.66% over the original single-junction c-Si solar cell’s efficiency. This advancement illustrates the potential of TMDC materials in next-generation solar cells and presents a promising avenue for the development of highly efficient, tandem photovoltaic systems vis van der Waals integration of the to-cell on Si.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信