Man Zhao, Wenjing Ma, Jinyi Liang, Yubao Xie, Tianzi Wei, Ming Zhang, Jiajie Qin, Lingyin Lao, Ruilin Tian, Haiqiang Wu, Jin Cheng, Min Li, Yuyang Liu, Liang Hong, Guofeng Li
{"title":"基于烯基吲哚-DCAF11 对的 BRD4 PROTAC 的设计、合成和活性评估","authors":"Man Zhao, Wenjing Ma, Jinyi Liang, Yubao Xie, Tianzi Wei, Ming Zhang, Jiajie Qin, Lingyin Lao, Ruilin Tian, Haiqiang Wu, Jin Cheng, Min Li, Yuyang Liu, Liang Hong, Guofeng Li","doi":"10.1021/acs.jmedchem.4c01767","DOIUrl":null,"url":null,"abstract":"Proteolytic targeting chimera (PROTAC) represent an advanced strategy for targeting undruggable proteins, and the molecular warheads targeting E3 ligases play a crucial role. Recently, we explored an alkenyl oxindole warhead targeting the E3 ligase DCAF11 and sought to validate its potential. In this study, we synthesized a range of BRD4 PROTACs (<b>8a</b>–<b>8o</b>, <b>14a–14f</b>, <b>22a–22m</b>) with modified alkenyl oxindole warheads and developed a high-throughput screening system based on high-content imaging. We identified <b>L134</b> (<b>22a</b>) as a potent BRD4 degrader, achieving BRD4 degradation (<i>D</i><sub>max</sub> > 98%, DC<sub>50</sub> = 7.36 nM) and demonstrating antitumor activity. Mechanically, BRD4 degradation by <b>L134</b> was mediated through the ubiquitin-proteasome system in a DCAF11-dependent manner. Therefore, this study provides a rapid screening method for effective PROTACs and highlights the PROTAC <b>L134</b> based on alkenyl oxindole-DCAF11 pair as a promising candidate for treating BRD4-driven cancers.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, and Activity Evaluation of BRD4 PROTAC Based on Alkenyl Oxindole-DCAF11 Pair\",\"authors\":\"Man Zhao, Wenjing Ma, Jinyi Liang, Yubao Xie, Tianzi Wei, Ming Zhang, Jiajie Qin, Lingyin Lao, Ruilin Tian, Haiqiang Wu, Jin Cheng, Min Li, Yuyang Liu, Liang Hong, Guofeng Li\",\"doi\":\"10.1021/acs.jmedchem.4c01767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proteolytic targeting chimera (PROTAC) represent an advanced strategy for targeting undruggable proteins, and the molecular warheads targeting E3 ligases play a crucial role. Recently, we explored an alkenyl oxindole warhead targeting the E3 ligase DCAF11 and sought to validate its potential. In this study, we synthesized a range of BRD4 PROTACs (<b>8a</b>–<b>8o</b>, <b>14a–14f</b>, <b>22a–22m</b>) with modified alkenyl oxindole warheads and developed a high-throughput screening system based on high-content imaging. We identified <b>L134</b> (<b>22a</b>) as a potent BRD4 degrader, achieving BRD4 degradation (<i>D</i><sub>max</sub> > 98%, DC<sub>50</sub> = 7.36 nM) and demonstrating antitumor activity. Mechanically, BRD4 degradation by <b>L134</b> was mediated through the ubiquitin-proteasome system in a DCAF11-dependent manner. Therefore, this study provides a rapid screening method for effective PROTACs and highlights the PROTAC <b>L134</b> based on alkenyl oxindole-DCAF11 pair as a promising candidate for treating BRD4-driven cancers.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01767\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01767","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, Synthesis, and Activity Evaluation of BRD4 PROTAC Based on Alkenyl Oxindole-DCAF11 Pair
Proteolytic targeting chimera (PROTAC) represent an advanced strategy for targeting undruggable proteins, and the molecular warheads targeting E3 ligases play a crucial role. Recently, we explored an alkenyl oxindole warhead targeting the E3 ligase DCAF11 and sought to validate its potential. In this study, we synthesized a range of BRD4 PROTACs (8a–8o, 14a–14f, 22a–22m) with modified alkenyl oxindole warheads and developed a high-throughput screening system based on high-content imaging. We identified L134 (22a) as a potent BRD4 degrader, achieving BRD4 degradation (Dmax > 98%, DC50 = 7.36 nM) and demonstrating antitumor activity. Mechanically, BRD4 degradation by L134 was mediated through the ubiquitin-proteasome system in a DCAF11-dependent manner. Therefore, this study provides a rapid screening method for effective PROTACs and highlights the PROTAC L134 based on alkenyl oxindole-DCAF11 pair as a promising candidate for treating BRD4-driven cancers.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.