Ilan T. Rosen, Sarah Muschinske, Cora N. Barrett, Arkya Chatterjee, Max Hays, Michael A. DeMarco, Amir H. Karamlou, David A. Rower, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Jeffrey A. Grover, William D. Oliver
{"title":"二维超导量子比特阵列中的合成磁矢量势","authors":"Ilan T. Rosen, Sarah Muschinske, Cora N. Barrett, Arkya Chatterjee, Max Hays, Michael A. DeMarco, Amir H. Karamlou, David A. Rower, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Jeffrey A. Grover, William D. Oliver","doi":"10.1038/s41567-024-02661-3","DOIUrl":null,"url":null,"abstract":"<p>Superconducting quantum processors are a compelling platform for analogue quantum simulation due to the precision control, fast operation and site-resolved readout inherent to the hardware. Arrays of coupled superconducting qubits natively emulate the dynamics of interacting particles according to the Bose–Hubbard model. However, many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields. Here we emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator. We realize a broadly adjustable synthetic magnetic vector potential by applying continuous modulation tones to all qubits. We verify that the synthetic vector potential obeys the required properties of electromagnetism: a spatially varying vector potential breaks time-reversal symmetry and generates a gauge-invariant synthetic magnetic field, and a temporally varying vector potential produces a synthetic electric field. We demonstrate that the Hall effect—the transverse deflection of a charged particle propagating in an electromagnetic field—exists in the presence of the synthetic electromagnetic field.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":17.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synthetic magnetic vector potential in a 2D superconducting qubit array\",\"authors\":\"Ilan T. Rosen, Sarah Muschinske, Cora N. Barrett, Arkya Chatterjee, Max Hays, Michael A. DeMarco, Amir H. Karamlou, David A. Rower, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Jeffrey A. Grover, William D. Oliver\",\"doi\":\"10.1038/s41567-024-02661-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Superconducting quantum processors are a compelling platform for analogue quantum simulation due to the precision control, fast operation and site-resolved readout inherent to the hardware. Arrays of coupled superconducting qubits natively emulate the dynamics of interacting particles according to the Bose–Hubbard model. However, many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields. Here we emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator. We realize a broadly adjustable synthetic magnetic vector potential by applying continuous modulation tones to all qubits. We verify that the synthetic vector potential obeys the required properties of electromagnetism: a spatially varying vector potential breaks time-reversal symmetry and generates a gauge-invariant synthetic magnetic field, and a temporally varying vector potential produces a synthetic electric field. We demonstrate that the Hall effect—the transverse deflection of a charged particle propagating in an electromagnetic field—exists in the presence of the synthetic electromagnetic field.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-024-02661-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02661-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A synthetic magnetic vector potential in a 2D superconducting qubit array
Superconducting quantum processors are a compelling platform for analogue quantum simulation due to the precision control, fast operation and site-resolved readout inherent to the hardware. Arrays of coupled superconducting qubits natively emulate the dynamics of interacting particles according to the Bose–Hubbard model. However, many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields. Here we emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator. We realize a broadly adjustable synthetic magnetic vector potential by applying continuous modulation tones to all qubits. We verify that the synthetic vector potential obeys the required properties of electromagnetism: a spatially varying vector potential breaks time-reversal symmetry and generates a gauge-invariant synthetic magnetic field, and a temporally varying vector potential produces a synthetic electric field. We demonstrate that the Hall effect—the transverse deflection of a charged particle propagating in an electromagnetic field—exists in the presence of the synthetic electromagnetic field.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.