Zhenyu Tao , Minghong Qiu , Kay Wille , Yanping Zhu , Rensheng Pan , Zhao Li , Xudong Shao
{"title":"试样厚度和纤维长度对超高分子量纤维增强混凝土结构(UHPFRC)拉伸和开裂行为的影响:单轴拉伸试验和微机械建模","authors":"Zhenyu Tao , Minghong Qiu , Kay Wille , Yanping Zhu , Rensheng Pan , Zhao Li , Xudong Shao","doi":"10.1016/j.cemconcomp.2024.105828","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to investigate the effects of specimen thickness and fiber length on the tensile and cracking behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC). To this end, a uniaxial tensile test was conducted with three specimen thicknesses (30, 50, and 100 mm) and two fiber lengths (13 and 20 mm), and the fiber orientation, dispersion and specimen void were quantitatively evaluated based on image recognition. The test results indicated that fiber orientation was improved with the decreased specimen thickness and increased fiber length. Meanwhile, the initial cracking and peak stress, capacity to limit cracking were enhanced with the decreased specimen thickness. A modified prediction model considering the wall effect, flattening and squeezing effect was developed to predict the probability density function <em>p</em>(<em>θ</em>) of fiber orientation angle. Additionally, the uniformity factor <em>μ</em><sub>2</sub> was introduced to predict crack number, and the relationship between the <em>μ</em><sub>2</sub> and parameter <em>ψ</em> = (<em>V</em><sub><em>f</em></sub> × <em>l</em><sub><em>f</em></sub>/<em>d</em><sub><em>f</em></sub>)/<em>t</em> was determined. Furthermore, a model was developed to convert the main crack width into uniaxial tensile strain. All models and relationships were validated using test data. A micromechanical model that considered the predicted <em>p</em>(<em>θ</em>) and conversion model was established to predict the uniaxial tensile response of UHPFRC, which was also successfully validated using test data.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"155 ","pages":"Article 105828"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of specimen thickness and fiber length on tensile and cracking behavior of UHPFRC: Uniaxial tensile test and micromechanical modeling\",\"authors\":\"Zhenyu Tao , Minghong Qiu , Kay Wille , Yanping Zhu , Rensheng Pan , Zhao Li , Xudong Shao\",\"doi\":\"10.1016/j.cemconcomp.2024.105828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to investigate the effects of specimen thickness and fiber length on the tensile and cracking behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC). To this end, a uniaxial tensile test was conducted with three specimen thicknesses (30, 50, and 100 mm) and two fiber lengths (13 and 20 mm), and the fiber orientation, dispersion and specimen void were quantitatively evaluated based on image recognition. The test results indicated that fiber orientation was improved with the decreased specimen thickness and increased fiber length. Meanwhile, the initial cracking and peak stress, capacity to limit cracking were enhanced with the decreased specimen thickness. A modified prediction model considering the wall effect, flattening and squeezing effect was developed to predict the probability density function <em>p</em>(<em>θ</em>) of fiber orientation angle. Additionally, the uniformity factor <em>μ</em><sub>2</sub> was introduced to predict crack number, and the relationship between the <em>μ</em><sub>2</sub> and parameter <em>ψ</em> = (<em>V</em><sub><em>f</em></sub> × <em>l</em><sub><em>f</em></sub>/<em>d</em><sub><em>f</em></sub>)/<em>t</em> was determined. Furthermore, a model was developed to convert the main crack width into uniaxial tensile strain. All models and relationships were validated using test data. A micromechanical model that considered the predicted <em>p</em>(<em>θ</em>) and conversion model was established to predict the uniaxial tensile response of UHPFRC, which was also successfully validated using test data.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"155 \",\"pages\":\"Article 105828\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946524004013\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Effects of specimen thickness and fiber length on tensile and cracking behavior of UHPFRC: Uniaxial tensile test and micromechanical modeling
This study aims to investigate the effects of specimen thickness and fiber length on the tensile and cracking behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC). To this end, a uniaxial tensile test was conducted with three specimen thicknesses (30, 50, and 100 mm) and two fiber lengths (13 and 20 mm), and the fiber orientation, dispersion and specimen void were quantitatively evaluated based on image recognition. The test results indicated that fiber orientation was improved with the decreased specimen thickness and increased fiber length. Meanwhile, the initial cracking and peak stress, capacity to limit cracking were enhanced with the decreased specimen thickness. A modified prediction model considering the wall effect, flattening and squeezing effect was developed to predict the probability density function p(θ) of fiber orientation angle. Additionally, the uniformity factor μ2 was introduced to predict crack number, and the relationship between the μ2 and parameter ψ = (Vf × lf/df)/t was determined. Furthermore, a model was developed to convert the main crack width into uniaxial tensile strain. All models and relationships were validated using test data. A micromechanical model that considered the predicted p(θ) and conversion model was established to predict the uniaxial tensile response of UHPFRC, which was also successfully validated using test data.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.