{"title":"工业规模海岛熔融纺制连续超细纤维,用于制作高度舒适的绝缘气凝胶毛毡服装","authors":"Yan Yu, Chengjian Xu, Zexu Hu, Hengxue Xiang, Junyan Zhang, Xinhai Zhang, Yanhua Cheng, Liping Zhu, Meifang Zhu","doi":"10.1002/adma.202414731","DOIUrl":null,"url":null,"abstract":"Aerogels are most attractive for thermal clothing. However, mechanical fragility and structural instability restrict their practical applications. These issues are overcome by developing industrial scale sea-island melt-spun ultrafine fibers with large and uniform length-to-diameter as building blocks, which are assembled into aerogel felts with corrugated lamellar structure through freeze-shaping technology. These aerogels possess excellent mechanical properties to meet fabric elasticity and comfort needs, including super-flexibility (25% tensile strain, 95% compression, 180° bending performance) and fatigue resistance of over 10,000 cycles. The aerogels are also self-cleaning, waterproof, breathable, and flame-retardant, making them suitable for application requirements in extreme environments. Moreover, the obtained aerogel felt clothing exhibits excellent thermal insulation properties close to that of dry air, and is only one-third as thick as down clothing with similar insulating properties. Expanding sea-island melt-spun fiber to construct aerogel in this strategy provides scalable potential for developing multifunctional insulating aerogel clothing.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Scale Sea-Island Melt-Spun Continuous Ultrafine Fibers for Highly Comfortable Insulated Aerogel Felt Clothing\",\"authors\":\"Yan Yu, Chengjian Xu, Zexu Hu, Hengxue Xiang, Junyan Zhang, Xinhai Zhang, Yanhua Cheng, Liping Zhu, Meifang Zhu\",\"doi\":\"10.1002/adma.202414731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerogels are most attractive for thermal clothing. However, mechanical fragility and structural instability restrict their practical applications. These issues are overcome by developing industrial scale sea-island melt-spun ultrafine fibers with large and uniform length-to-diameter as building blocks, which are assembled into aerogel felts with corrugated lamellar structure through freeze-shaping technology. These aerogels possess excellent mechanical properties to meet fabric elasticity and comfort needs, including super-flexibility (25% tensile strain, 95% compression, 180° bending performance) and fatigue resistance of over 10,000 cycles. The aerogels are also self-cleaning, waterproof, breathable, and flame-retardant, making them suitable for application requirements in extreme environments. Moreover, the obtained aerogel felt clothing exhibits excellent thermal insulation properties close to that of dry air, and is only one-third as thick as down clothing with similar insulating properties. Expanding sea-island melt-spun fiber to construct aerogel in this strategy provides scalable potential for developing multifunctional insulating aerogel clothing.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202414731\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Aerogels are most attractive for thermal clothing. However, mechanical fragility and structural instability restrict their practical applications. These issues are overcome by developing industrial scale sea-island melt-spun ultrafine fibers with large and uniform length-to-diameter as building blocks, which are assembled into aerogel felts with corrugated lamellar structure through freeze-shaping technology. These aerogels possess excellent mechanical properties to meet fabric elasticity and comfort needs, including super-flexibility (25% tensile strain, 95% compression, 180° bending performance) and fatigue resistance of over 10,000 cycles. The aerogels are also self-cleaning, waterproof, breathable, and flame-retardant, making them suitable for application requirements in extreme environments. Moreover, the obtained aerogel felt clothing exhibits excellent thermal insulation properties close to that of dry air, and is only one-third as thick as down clothing with similar insulating properties. Expanding sea-island melt-spun fiber to construct aerogel in this strategy provides scalable potential for developing multifunctional insulating aerogel clothing.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.