{"title":"工业样品中的 Cu(II) 可追溯性:利用改性纳米粒子和磁性电极创新检测方法","authors":"Cecilia Daniela Costa, Delphine Talbot, Agnes Bee, Sebastien Abramson, Virginia Emilse Diz, Graciela Alicia Alicia González","doi":"10.1039/d4en00459k","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for the sensitive detection of Cu(II) ions in acidic industrial samples, used in the manufacture of printed circuits. The study outlines the synthesis and functionalization of Fe3O4 magnetic nanoparticles, emphasizing the optimization of parameters affecting Cu(II) concentration measurements. The NPs are surface-modified with APTES and succinic acid and characterized through different methods including TEM imaging and FTIR analysis. A method employing the magnetic NPs for bulk preconcentration of Cu(II) ions, followed by collection using a simple and home-made magnetic glassy carbon electrode (MGCE), is detailed. The electrochemical analysis showcases the efficiency of the proposed method for rapid and sequential measurements of Cu(II) ions adequate for industrial matrixes. Results demonstrate the potential of this approach for sensitive Cu(II) sensing, offering a cost-effective and efficient alternative to conventional analytical techniques. Notably, the successful quantification of Cu(II) concentrations in a real sample obtained from an acid industrial electroplating bath of CuSO4 highlights the practical applicability of the developed methodology.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu(II) Traceability in Industrial Samples: Innovating Detection with Modified Nanoparticles and Magnetic Electrodes\",\"authors\":\"Cecilia Daniela Costa, Delphine Talbot, Agnes Bee, Sebastien Abramson, Virginia Emilse Diz, Graciela Alicia Alicia González\",\"doi\":\"10.1039/d4en00459k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for the sensitive detection of Cu(II) ions in acidic industrial samples, used in the manufacture of printed circuits. The study outlines the synthesis and functionalization of Fe3O4 magnetic nanoparticles, emphasizing the optimization of parameters affecting Cu(II) concentration measurements. The NPs are surface-modified with APTES and succinic acid and characterized through different methods including TEM imaging and FTIR analysis. A method employing the magnetic NPs for bulk preconcentration of Cu(II) ions, followed by collection using a simple and home-made magnetic glassy carbon electrode (MGCE), is detailed. The electrochemical analysis showcases the efficiency of the proposed method for rapid and sequential measurements of Cu(II) ions adequate for industrial matrixes. Results demonstrate the potential of this approach for sensitive Cu(II) sensing, offering a cost-effective and efficient alternative to conventional analytical techniques. Notably, the successful quantification of Cu(II) concentrations in a real sample obtained from an acid industrial electroplating bath of CuSO4 highlights the practical applicability of the developed methodology.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d4en00459k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00459k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cu(II) Traceability in Industrial Samples: Innovating Detection with Modified Nanoparticles and Magnetic Electrodes
This paper presents a novel approach for the sensitive detection of Cu(II) ions in acidic industrial samples, used in the manufacture of printed circuits. The study outlines the synthesis and functionalization of Fe3O4 magnetic nanoparticles, emphasizing the optimization of parameters affecting Cu(II) concentration measurements. The NPs are surface-modified with APTES and succinic acid and characterized through different methods including TEM imaging and FTIR analysis. A method employing the magnetic NPs for bulk preconcentration of Cu(II) ions, followed by collection using a simple and home-made magnetic glassy carbon electrode (MGCE), is detailed. The electrochemical analysis showcases the efficiency of the proposed method for rapid and sequential measurements of Cu(II) ions adequate for industrial matrixes. Results demonstrate the potential of this approach for sensitive Cu(II) sensing, offering a cost-effective and efficient alternative to conventional analytical techniques. Notably, the successful quantification of Cu(II) concentrations in a real sample obtained from an acid industrial electroplating bath of CuSO4 highlights the practical applicability of the developed methodology.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.