MIKC*型MADS转录因子控制拟南芥中JINGUBANG的表达和花粉休眠程度

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Liguang Zhang, Fei Ma, Guangxing Duan, Yan Ju, Tingqiao Yu, Quan Zhang, Sodmergen Sodmergen
{"title":"MIKC*型MADS转录因子控制拟南芥中JINGUBANG的表达和花粉休眠程度","authors":"Liguang Zhang, Fei Ma, Guangxing Duan, Yan Ju, Tingqiao Yu, Quan Zhang, Sodmergen Sodmergen","doi":"10.1093/plphys/kiae576","DOIUrl":null,"url":null,"abstract":"While pollen dormancy has been proposed to play a necessary role in sexual reproduction, it remains poorly understood. Here, we used traditional pollen germination assays to characterize dormancy. Our results underscore variation in the degree of dormancy between individual pollen grains. In addition, we provide evidence that JINGUBANG (JGB), previously defined as a negative regulator of pollen germination in Arabidopsis (Arabidopsis thaliana), is responsible for the uneven degrees of pollen dormancy, as asynchronous pollen germination in vitro reflected varied expression levels of JGB. We identified five cis-acting elements, including four CArG-boxes and the previously uncharacterized element ERE7, as essential for the initiation and enhancement of JGB expression. A 10-bp sequence between CArG-box 3 and ERE7, likely the result of an inverse DNA loop formed between CArG-box 3 and CArG-box 4, was required for robust gene expression. In addition, the pollen-specific AtMIKC*-type MADS transcription factors AGAMOUS-LIKE 30 (AGL30), AGL65, AGL66, AGL94, and AGL104 activated JGB transcription. Notably, the transactivation levels differed among the obligate AtMIKC* heterodimers tested. Our results indicate that distinct AtMIKC* complexes formed in individual pollen grains direct pollen dormancy to uneven degrees, which is likely an adaptive trait that ensures broader pollen dispersal under adverse environmental conditions.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"238 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIKC*-type MADS transcription factors control JINGUBANG expression and the degree of pollen dormancy in Arabidopsis\",\"authors\":\"Liguang Zhang, Fei Ma, Guangxing Duan, Yan Ju, Tingqiao Yu, Quan Zhang, Sodmergen Sodmergen\",\"doi\":\"10.1093/plphys/kiae576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While pollen dormancy has been proposed to play a necessary role in sexual reproduction, it remains poorly understood. Here, we used traditional pollen germination assays to characterize dormancy. Our results underscore variation in the degree of dormancy between individual pollen grains. In addition, we provide evidence that JINGUBANG (JGB), previously defined as a negative regulator of pollen germination in Arabidopsis (Arabidopsis thaliana), is responsible for the uneven degrees of pollen dormancy, as asynchronous pollen germination in vitro reflected varied expression levels of JGB. We identified five cis-acting elements, including four CArG-boxes and the previously uncharacterized element ERE7, as essential for the initiation and enhancement of JGB expression. A 10-bp sequence between CArG-box 3 and ERE7, likely the result of an inverse DNA loop formed between CArG-box 3 and CArG-box 4, was required for robust gene expression. In addition, the pollen-specific AtMIKC*-type MADS transcription factors AGAMOUS-LIKE 30 (AGL30), AGL65, AGL66, AGL94, and AGL104 activated JGB transcription. Notably, the transactivation levels differed among the obligate AtMIKC* heterodimers tested. Our results indicate that distinct AtMIKC* complexes formed in individual pollen grains direct pollen dormancy to uneven degrees, which is likely an adaptive trait that ensures broader pollen dispersal under adverse environmental conditions.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"238 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae576\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae576","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然花粉休眠被认为在有性生殖中发挥着必要的作用,但人们对它的了解仍然很少。在这里,我们使用传统的花粉萌发试验来描述休眠的特征。我们的研究结果表明,不同花粉粒的休眠程度存在差异。此外,我们还提供了证据,证明之前被定义为拟南芥花粉萌发负调控因子的 JINGUBANG(JGB)是造成花粉休眠程度不均的原因,因为体外花粉萌发不同步反映了 JGB 不同的表达水平。我们确定了五个顺式作用元件,包括四个 CArG-框和之前未表征的元件 ERE7,它们对 JGB 表达的启动和增强至关重要。CArG-box3和ERE7之间的10-bp序列可能是CArG-box3和CArG-box4之间形成的反向DNA环路的结果,是基因强劲表达所必需的。此外,花粉特异性 AtMIKC* 型 MADS 转录因子 AGAMOUS-LIKE 30(AGL30)、AGL65、AGL66、AGL94 和 AGL104 也激活了 JGB 的转录。值得注意的是,所测试的强制性 AtMIKC* 异源二聚体的转录激活水平各不相同。我们的研究结果表明,在单个花粉粒中形成的不同 AtMIKC* 复合物会在不同程度上引导花粉休眠,这可能是一种适应性特征,可确保花粉在不利环境条件下更广泛地传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIKC*-type MADS transcription factors control JINGUBANG expression and the degree of pollen dormancy in Arabidopsis
While pollen dormancy has been proposed to play a necessary role in sexual reproduction, it remains poorly understood. Here, we used traditional pollen germination assays to characterize dormancy. Our results underscore variation in the degree of dormancy between individual pollen grains. In addition, we provide evidence that JINGUBANG (JGB), previously defined as a negative regulator of pollen germination in Arabidopsis (Arabidopsis thaliana), is responsible for the uneven degrees of pollen dormancy, as asynchronous pollen germination in vitro reflected varied expression levels of JGB. We identified five cis-acting elements, including four CArG-boxes and the previously uncharacterized element ERE7, as essential for the initiation and enhancement of JGB expression. A 10-bp sequence between CArG-box 3 and ERE7, likely the result of an inverse DNA loop formed between CArG-box 3 and CArG-box 4, was required for robust gene expression. In addition, the pollen-specific AtMIKC*-type MADS transcription factors AGAMOUS-LIKE 30 (AGL30), AGL65, AGL66, AGL94, and AGL104 activated JGB transcription. Notably, the transactivation levels differed among the obligate AtMIKC* heterodimers tested. Our results indicate that distinct AtMIKC* complexes formed in individual pollen grains direct pollen dormancy to uneven degrees, which is likely an adaptive trait that ensures broader pollen dispersal under adverse environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信