磷酸酮醇酶和 KDPG 醛缩酶代谢调节蓝藻的光合碳产量

Ningdong Xie, Chetna Sharma, Katherine Rusche, Xin Wang
{"title":"磷酸酮醇酶和 KDPG 醛缩酶代谢调节蓝藻的光合碳产量","authors":"Ningdong Xie, Chetna Sharma, Katherine Rusche, Xin Wang","doi":"10.1093/plcell/koae291","DOIUrl":null,"url":null,"abstract":"Cyanobacteria contribute to roughly a quarter of global net carbon fixation. During diel light/dark growth, dark respiration substantially lowers the overall photosynthetic carbon yield in cyanobacteria and other phototrophs. How respiratory pathways participate in carbon resource allocation at night to optimize dark survival and support daytime photosynthesis remains unclear. Here, using the cyanobacterium Synechococcus elongatus PCC 7942, we show that phosphoketolase integrates into a respiratory network in the dark to best allocate carbon resources for amino acid biosynthesis and to prepare for photosynthesis reinitiation upon photoinduction. Moreover, we show that the respiratory Entner-Doudoroff (ED) pathway in S. elongatus is incomplete, with its key enzyme 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase exhibiting alternative oxaloacetate decarboxylation activity that modulates daytime photosynthesis. This activity allows for the bypassing of the tricarboxylic acid (TCA) cycle when ATP and NADPH consumption for biosynthesis is excessive and imbalanced relative to their production by the light reactions, thereby preventing relative NADPH accumulation and ensuring optimal photosynthetic carbon yield. Optimizing these metabolic processes offers opportunities to enhance photosynthetic carbon yield in cyanobacteria and other photosynthetic organisms under diel light/dark cycles.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphoketolase and KDPG aldolase metabolisms modulate photosynthetic carbon yield in cyanobacteria\",\"authors\":\"Ningdong Xie, Chetna Sharma, Katherine Rusche, Xin Wang\",\"doi\":\"10.1093/plcell/koae291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyanobacteria contribute to roughly a quarter of global net carbon fixation. During diel light/dark growth, dark respiration substantially lowers the overall photosynthetic carbon yield in cyanobacteria and other phototrophs. How respiratory pathways participate in carbon resource allocation at night to optimize dark survival and support daytime photosynthesis remains unclear. Here, using the cyanobacterium Synechococcus elongatus PCC 7942, we show that phosphoketolase integrates into a respiratory network in the dark to best allocate carbon resources for amino acid biosynthesis and to prepare for photosynthesis reinitiation upon photoinduction. Moreover, we show that the respiratory Entner-Doudoroff (ED) pathway in S. elongatus is incomplete, with its key enzyme 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase exhibiting alternative oxaloacetate decarboxylation activity that modulates daytime photosynthesis. This activity allows for the bypassing of the tricarboxylic acid (TCA) cycle when ATP and NADPH consumption for biosynthesis is excessive and imbalanced relative to their production by the light reactions, thereby preventing relative NADPH accumulation and ensuring optimal photosynthetic carbon yield. Optimizing these metabolic processes offers opportunities to enhance photosynthetic carbon yield in cyanobacteria and other photosynthetic organisms under diel light/dark cycles.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koae291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蓝藻约占全球净碳固定量的四分之一。在昼夜光/暗生长过程中,暗呼吸大大降低了蓝藻和其他光营养生物的总体光合碳产量。目前还不清楚呼吸途径如何参与夜间碳资源分配,以优化黑暗生存和支持白天光合作用。在这里,我们利用蓝藻细长球藻(Synechococcus elongatus PCC 7942)证明,磷酸酮醇酶在黑暗中融入呼吸网络,为氨基酸的生物合成分配最佳碳资源,并为光诱导后重新启动光合作用做好准备。此外,我们还发现拉长节尾柱虫的恩特纳-杜多罗夫(ED)呼吸途径是不完整的,其关键酶 2-酮基-3-脱氧-6-磷酸葡萄糖酸(KDPG)醛缩酶表现出替代性的草酰乙酸脱羧活性,可调节白天的光合作用。当用于生物合成的 ATP 和 NADPH 消耗过多且与光反应产生的不平衡时,这种活性可以绕过三羧酸(TCA)循环,从而防止 NADPH 的相对积累,确保最佳光合碳产量。优化这些代谢过程为提高蓝藻和其他光合生物在昼夜光/暗循环条件下的光合碳产量提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phosphoketolase and KDPG aldolase metabolisms modulate photosynthetic carbon yield in cyanobacteria
Cyanobacteria contribute to roughly a quarter of global net carbon fixation. During diel light/dark growth, dark respiration substantially lowers the overall photosynthetic carbon yield in cyanobacteria and other phototrophs. How respiratory pathways participate in carbon resource allocation at night to optimize dark survival and support daytime photosynthesis remains unclear. Here, using the cyanobacterium Synechococcus elongatus PCC 7942, we show that phosphoketolase integrates into a respiratory network in the dark to best allocate carbon resources for amino acid biosynthesis and to prepare for photosynthesis reinitiation upon photoinduction. Moreover, we show that the respiratory Entner-Doudoroff (ED) pathway in S. elongatus is incomplete, with its key enzyme 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase exhibiting alternative oxaloacetate decarboxylation activity that modulates daytime photosynthesis. This activity allows for the bypassing of the tricarboxylic acid (TCA) cycle when ATP and NADPH consumption for biosynthesis is excessive and imbalanced relative to their production by the light reactions, thereby preventing relative NADPH accumulation and ensuring optimal photosynthetic carbon yield. Optimizing these metabolic processes offers opportunities to enhance photosynthetic carbon yield in cyanobacteria and other photosynthetic organisms under diel light/dark cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信