用于稳定锂硫电池的多硫化物锚定/转换的双功能电催化混合异质结构

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-10-30 DOI:10.1039/D4NR03190C
Sakthivel Kaliyaperumal, Karthik Kiran Sarigamala, Padmini Moorthy, Balaji Ramachandran, Narendhar Chandrasekar and Tim Albrecht
{"title":"用于稳定锂硫电池的多硫化物锚定/转换的双功能电催化混合异质结构","authors":"Sakthivel Kaliyaperumal, Karthik Kiran Sarigamala, Padmini Moorthy, Balaji Ramachandran, Narendhar Chandrasekar and Tim Albrecht","doi":"10.1039/D4NR03190C","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>In situ</em> phase engineering of transition metal dichalcogenides (TMDs) with controlled sulfur vacancies offers a promising strategy for superior-performance lithium–sulfur (Li–S) batteries. Herein, we demonstrate a bifunctional approach by designing a sulfur host material using 1T-MoS<small><sub>2</sub></small>/MoO<small><sub>3</sub></small> heterostructures grown directly on carbon nanopot-resembling designer structures (CMS). The metallic phase (1T-MoS<small><sub>2</sub></small>) with MoO<small><sub>3</sub></small> synergistically contributes to exceptional electronic transport, increased interlayer spacing, and more electrochemically active sites across its basal plane. Carbon nanopot structures and sulfur vacancies within the TMDs act as anchoring sites for lithium polysulfides (LiPSs). Additionally, the specifically phase-engineered 2D heterostructure promotes their efficient conversion into the electrochemically favorable Li<small><sub>2</sub></small>S phase. This dual functionality is expected to significantly improve the rate capability and cycle life stability of Li–S batteries. This translates to a high reversible rate capacity of 1205 mA h g<small><sup>−1</sup></small> at a current density of 0.2 A g<small><sup>−1</sup></small>. The sulfur-loaded CMS nanostructure shows an excellent cycling life with a decay rate of only 0.078% over 1100 cycles at 1 A g<small><sup>−1</sup></small>, underscoring the effectiveness of the <em>in situ</em> phase engineering approach for creating a stable Li–S battery.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 48","pages":" 22240-22251"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional electrocatalytic hybrid heterostructures for polysulfide anchoring/conversion for a stable lithium–sulfur battery†\",\"authors\":\"Sakthivel Kaliyaperumal, Karthik Kiran Sarigamala, Padmini Moorthy, Balaji Ramachandran, Narendhar Chandrasekar and Tim Albrecht\",\"doi\":\"10.1039/D4NR03190C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >\\r\\n <em>In situ</em> phase engineering of transition metal dichalcogenides (TMDs) with controlled sulfur vacancies offers a promising strategy for superior-performance lithium–sulfur (Li–S) batteries. Herein, we demonstrate a bifunctional approach by designing a sulfur host material using 1T-MoS<small><sub>2</sub></small>/MoO<small><sub>3</sub></small> heterostructures grown directly on carbon nanopot-resembling designer structures (CMS). The metallic phase (1T-MoS<small><sub>2</sub></small>) with MoO<small><sub>3</sub></small> synergistically contributes to exceptional electronic transport, increased interlayer spacing, and more electrochemically active sites across its basal plane. Carbon nanopot structures and sulfur vacancies within the TMDs act as anchoring sites for lithium polysulfides (LiPSs). Additionally, the specifically phase-engineered 2D heterostructure promotes their efficient conversion into the electrochemically favorable Li<small><sub>2</sub></small>S phase. This dual functionality is expected to significantly improve the rate capability and cycle life stability of Li–S batteries. This translates to a high reversible rate capacity of 1205 mA h g<small><sup>−1</sup></small> at a current density of 0.2 A g<small><sup>−1</sup></small>. The sulfur-loaded CMS nanostructure shows an excellent cycling life with a decay rate of only 0.078% over 1100 cycles at 1 A g<small><sup>−1</sup></small>, underscoring the effectiveness of the <em>in situ</em> phase engineering approach for creating a stable Li–S battery.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 48\",\"pages\":\" 22240-22251\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr03190c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr03190c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有可控硫空位的过渡金属二钙化物(TMDs)原位相工程为实现高性能锂硫(Li-S)电池提供了一种前景广阔的策略。在这里,我们展示了一种双功能方法,即利用直接生长在碳纳米管类似设计器结构(CMS)上的 1T-MoS2/MoO3 异质结构设计硫宿主材料。金属相(1T-MoS2)与 MoO3 的协同作用有助于实现优异的电子传输、增加层间间距以及在其基底面上形成更多的电化学活性位点。TMD 中的碳纳米管结构和硫空位可作为多硫化锂 (LiPS) 的锚定位点。此外,经过特殊相位设计的二维异质结构还能促进锂多硫化物高效转化为电化学性能良好的 Li2S 相。这种双重功能有望显著提高锂硫电池的速率能力和循环寿命稳定性。硫负载的 CMS 纳米结构具有出色的循环寿命,在 1 A g-¹ 的条件下循环 1100 次,衰减率仅为 0.078%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bifunctional electrocatalytic hybrid heterostructures for polysulfide anchoring/conversion for a stable lithium–sulfur battery†

Bifunctional electrocatalytic hybrid heterostructures for polysulfide anchoring/conversion for a stable lithium–sulfur battery†

In situ phase engineering of transition metal dichalcogenides (TMDs) with controlled sulfur vacancies offers a promising strategy for superior-performance lithium–sulfur (Li–S) batteries. Herein, we demonstrate a bifunctional approach by designing a sulfur host material using 1T-MoS2/MoO3 heterostructures grown directly on carbon nanopot-resembling designer structures (CMS). The metallic phase (1T-MoS2) with MoO3 synergistically contributes to exceptional electronic transport, increased interlayer spacing, and more electrochemically active sites across its basal plane. Carbon nanopot structures and sulfur vacancies within the TMDs act as anchoring sites for lithium polysulfides (LiPSs). Additionally, the specifically phase-engineered 2D heterostructure promotes their efficient conversion into the electrochemically favorable Li2S phase. This dual functionality is expected to significantly improve the rate capability and cycle life stability of Li–S batteries. This translates to a high reversible rate capacity of 1205 mA h g−1 at a current density of 0.2 A g−1. The sulfur-loaded CMS nanostructure shows an excellent cycling life with a decay rate of only 0.078% over 1100 cycles at 1 A g−1, underscoring the effectiveness of the in situ phase engineering approach for creating a stable Li–S battery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信