利用星簇测量太阳风中的泰勒微尺度和有效磁雷诺数

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
O. W. Roberts, K. G. Klein, Z. Vörös, R. Nakamura, X. Li, Y. Narita, D. Schmid, R. Bandyopadhyay, W. H. Matthaeus
{"title":"利用星簇测量太阳风中的泰勒微尺度和有效磁雷诺数","authors":"O. W. Roberts,&nbsp;K. G. Klein,&nbsp;Z. Vörös,&nbsp;R. Nakamura,&nbsp;X. Li,&nbsp;Y. Narita,&nbsp;D. Schmid,&nbsp;R. Bandyopadhyay,&nbsp;W. H. Matthaeus","doi":"10.1029/2024JA032968","DOIUrl":null,"url":null,"abstract":"<p>We use magnetic field data from the Cluster mission to estimate the value of the Taylor microscale and the effective magnetic Reynolds number in the interplanetary solar wind. Turbulent cascades can be characterized by the spatial scale at which dissipation begins to impact the local energy transfer, estimated by the Taylor microscale, as well as the separation between the injection and dissipation scales, estimated by the effective magnetic Reynolds number. Estimating the Taylor microscale requires measurements of the autocorrelation function at small separations. The Cluster spacecraft have exceptionally sensitive search coil magnetometers with high time resolution, making them ideal for measuring the Taylor microscale. We obtain a value of <span></span><math>\n <semantics>\n <mrow>\n <mn>430</mn>\n <mo>±</mo>\n <mn>20</mn>\n </mrow>\n <annotation> $430\\pm 20$</annotation>\n </semantics></math> km; smaller than most previous measurements. We interpret this value as being smaller due to the higher time resolution, enabling the curvature of the autocorrelation function to be measured closer to the origin, giving a more accurate measurement. Combining the Taylor Microscale's computed value with concurrent correlation length measurements, we obtain a value of <span></span><math>\n <semantics>\n <mrow>\n <mn>150</mn>\n <mo>,</mo>\n <mn>000</mn>\n <mo>±</mo>\n <mn>10</mn>\n <mo>,</mo>\n <mn>000</mn>\n </mrow>\n <annotation> $150,000\\pm 10,000$</annotation>\n </semantics></math> for the effective magnetic Reynolds number, which compares well to other observations. The four spacecraft of Cluster also allow directions transverse to the flow to be surveyed. The small separations (7 km) of Clusters 3 and 4 show that the Taylor microscale may vary as a function of direction to the mean magnetic field direction. The observed differences are small, requiring more observations to confirm this anisotropy.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032968","citationCount":"0","resultStr":"{\"title\":\"Measurement of the Taylor Microscale and the Effective Magnetic Reynolds Number in the Solar Wind With Cluster\",\"authors\":\"O. W. Roberts,&nbsp;K. G. Klein,&nbsp;Z. Vörös,&nbsp;R. Nakamura,&nbsp;X. Li,&nbsp;Y. Narita,&nbsp;D. Schmid,&nbsp;R. Bandyopadhyay,&nbsp;W. H. Matthaeus\",\"doi\":\"10.1029/2024JA032968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use magnetic field data from the Cluster mission to estimate the value of the Taylor microscale and the effective magnetic Reynolds number in the interplanetary solar wind. Turbulent cascades can be characterized by the spatial scale at which dissipation begins to impact the local energy transfer, estimated by the Taylor microscale, as well as the separation between the injection and dissipation scales, estimated by the effective magnetic Reynolds number. Estimating the Taylor microscale requires measurements of the autocorrelation function at small separations. The Cluster spacecraft have exceptionally sensitive search coil magnetometers with high time resolution, making them ideal for measuring the Taylor microscale. We obtain a value of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>430</mn>\\n <mo>±</mo>\\n <mn>20</mn>\\n </mrow>\\n <annotation> $430\\\\pm 20$</annotation>\\n </semantics></math> km; smaller than most previous measurements. We interpret this value as being smaller due to the higher time resolution, enabling the curvature of the autocorrelation function to be measured closer to the origin, giving a more accurate measurement. Combining the Taylor Microscale's computed value with concurrent correlation length measurements, we obtain a value of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>150</mn>\\n <mo>,</mo>\\n <mn>000</mn>\\n <mo>±</mo>\\n <mn>10</mn>\\n <mo>,</mo>\\n <mn>000</mn>\\n </mrow>\\n <annotation> $150,000\\\\pm 10,000$</annotation>\\n </semantics></math> for the effective magnetic Reynolds number, which compares well to other observations. The four spacecraft of Cluster also allow directions transverse to the flow to be surveyed. The small separations (7 km) of Clusters 3 and 4 show that the Taylor microscale may vary as a function of direction to the mean magnetic field direction. The observed differences are small, requiring more observations to confirm this anisotropy.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032968\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032968\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032968","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用星团任务提供的磁场数据来估算行星际太阳风中的泰勒微尺度值和有效磁雷诺数。湍流级联的特征是耗散开始影响局部能量转移的空间尺度(由泰勒微尺度估算),以及注入尺度和耗散尺度之间的间隔(由有效磁雷诺数估算)。要估算泰勒微尺度,需要测量小间隔处的自相关函数。星团航天器拥有高灵敏度的搜索线圈磁力计和高时间分辨率,是测量泰勒微尺度的理想工具。我们得到的数值为 430 ± 20 $430\pm 20$ km;小于之前的大多数测量值。我们把这个值解释为由于更高的时间分辨率使自相关函数的曲率测量更接近原点,从而得到更精确的测量结果。将泰勒微尺度的计算值与同时进行的相关长度测量相结合,我们得到有效磁雷诺数的值为 150 , 000 ± 10 , 000 $150,000\pm 10,000$ ,这与其他观测结果相差无几。集群的四个航天器还可以对流动的横向方向进行勘测。星团 3 和星团 4 相距较小(7 千米),这表明泰勒微尺度可能随平均磁场方向的变化而变化。观测到的差异很小,需要更多的观测来证实这种各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Measurement of the Taylor Microscale and the Effective Magnetic Reynolds Number in the Solar Wind With Cluster

Measurement of the Taylor Microscale and the Effective Magnetic Reynolds Number in the Solar Wind With Cluster

We use magnetic field data from the Cluster mission to estimate the value of the Taylor microscale and the effective magnetic Reynolds number in the interplanetary solar wind. Turbulent cascades can be characterized by the spatial scale at which dissipation begins to impact the local energy transfer, estimated by the Taylor microscale, as well as the separation between the injection and dissipation scales, estimated by the effective magnetic Reynolds number. Estimating the Taylor microscale requires measurements of the autocorrelation function at small separations. The Cluster spacecraft have exceptionally sensitive search coil magnetometers with high time resolution, making them ideal for measuring the Taylor microscale. We obtain a value of 430 ± 20 $430\pm 20$ km; smaller than most previous measurements. We interpret this value as being smaller due to the higher time resolution, enabling the curvature of the autocorrelation function to be measured closer to the origin, giving a more accurate measurement. Combining the Taylor Microscale's computed value with concurrent correlation length measurements, we obtain a value of 150 , 000 ± 10 , 000 $150,000\pm 10,000$ for the effective magnetic Reynolds number, which compares well to other observations. The four spacecraft of Cluster also allow directions transverse to the flow to be surveyed. The small separations (7 km) of Clusters 3 and 4 show that the Taylor microscale may vary as a function of direction to the mean magnetic field direction. The observed differences are small, requiring more observations to confirm this anisotropy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信