Noor Habib Khan, Yong Wang, Salman Habib, Raheela Jamal, Muhammad Majid Gulzar, S. M. Muyeen, Mohamed Ebeed
{"title":"使用改进的肝癌算法,结合风力涡轮机和太阳能光伏发电的随机优化电力流框架","authors":"Noor Habib Khan, Yong Wang, Salman Habib, Raheela Jamal, Muhammad Majid Gulzar, S. M. Muyeen, Mohamed Ebeed","doi":"10.1049/rpg2.13113","DOIUrl":null,"url":null,"abstract":"<p>The present study introduces a nature inspired improved liver cancer algorithm (ILCA) for solving the non-convex engineering optimization issues. The traditional LCA (t-LCA) inspires from the conduct of liver tumours and integrates biological ethics during the optimization procedure. However, t-LCA facing stagnation issues and may trap into local optima. To avoid such issues and provide the optimal solution, there are some modifications are implemented into the internal structure of t-LCA based on Weibull flight operator, mutation-based approach, quasi-opposite-based learning and gorilla troops exploitation-based mechanisms to enhance the overall strength of the algorithm to obtain the global solution. For validation of ILCA, the non-parametric and the statistical analysis are performed using benchmark standard functions. Moreover, ILCA is applied to resolve the stochastic renewable-based (wind turbines + PVs) optimal power flow problem using a modified RER-based IEEE 57-bus. The objective of this work is to obtain the minimum predicted power losses and enhance the predicted voltage stability. By incorporation of renewable resources into the modified IEEE57-bus network can help the system to reduce the power losses from 5.6622 to 3.8142 MW, while the voltage stability is enhanced from 0.1700 to 0.1164 p.u.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2672-2693"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13113","citationCount":"0","resultStr":"{\"title\":\"Stochastic optimal power flow framework with incorporation of wind turbines and solar PVs using improved liver cancer algorithm\",\"authors\":\"Noor Habib Khan, Yong Wang, Salman Habib, Raheela Jamal, Muhammad Majid Gulzar, S. M. Muyeen, Mohamed Ebeed\",\"doi\":\"10.1049/rpg2.13113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study introduces a nature inspired improved liver cancer algorithm (ILCA) for solving the non-convex engineering optimization issues. The traditional LCA (t-LCA) inspires from the conduct of liver tumours and integrates biological ethics during the optimization procedure. However, t-LCA facing stagnation issues and may trap into local optima. To avoid such issues and provide the optimal solution, there are some modifications are implemented into the internal structure of t-LCA based on Weibull flight operator, mutation-based approach, quasi-opposite-based learning and gorilla troops exploitation-based mechanisms to enhance the overall strength of the algorithm to obtain the global solution. For validation of ILCA, the non-parametric and the statistical analysis are performed using benchmark standard functions. Moreover, ILCA is applied to resolve the stochastic renewable-based (wind turbines + PVs) optimal power flow problem using a modified RER-based IEEE 57-bus. The objective of this work is to obtain the minimum predicted power losses and enhance the predicted voltage stability. By incorporation of renewable resources into the modified IEEE57-bus network can help the system to reduce the power losses from 5.6622 to 3.8142 MW, while the voltage stability is enhanced from 0.1700 to 0.1164 p.u.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 14\",\"pages\":\"2672-2693\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13113\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13113","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Stochastic optimal power flow framework with incorporation of wind turbines and solar PVs using improved liver cancer algorithm
The present study introduces a nature inspired improved liver cancer algorithm (ILCA) for solving the non-convex engineering optimization issues. The traditional LCA (t-LCA) inspires from the conduct of liver tumours and integrates biological ethics during the optimization procedure. However, t-LCA facing stagnation issues and may trap into local optima. To avoid such issues and provide the optimal solution, there are some modifications are implemented into the internal structure of t-LCA based on Weibull flight operator, mutation-based approach, quasi-opposite-based learning and gorilla troops exploitation-based mechanisms to enhance the overall strength of the algorithm to obtain the global solution. For validation of ILCA, the non-parametric and the statistical analysis are performed using benchmark standard functions. Moreover, ILCA is applied to resolve the stochastic renewable-based (wind turbines + PVs) optimal power flow problem using a modified RER-based IEEE 57-bus. The objective of this work is to obtain the minimum predicted power losses and enhance the predicted voltage stability. By incorporation of renewable resources into the modified IEEE57-bus network can help the system to reduce the power losses from 5.6622 to 3.8142 MW, while the voltage stability is enhanced from 0.1700 to 0.1164 p.u.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf