{"title":"基于推算的短期突变风速预报技术","authors":"Karan Sareen, Bijaya Ketan Panigrahi, Tushar Shikhola, Ravi Nath Tripathi, Ashok Kumar Rajput","doi":"10.1049/rpg2.13124","DOIUrl":null,"url":null,"abstract":"<p>It is tough and complex to forecast wind speed due to its intermittent and stochastic nature as well as sudden and abrupt variations in the wind speed. Further, it is required to handle the variety of scenarios e.g. cyber-attacks, unexpected power device malfunction, communication/sensor outages etc. that can cause the missing data.This paper proposes and employs a de-noising autoencoder algorithm for wind speed forecasting to ensure the handling of missing data information. At the next step, the data is processed via variational mode decomposition technique to mitigate the noise and improves the model's prediction accuracy. Furthermore, the bi-directional long-short term memory deep learning approach is tied with convolution neural network to increase prediction accuracy and anticipating the sudden/abrupt changes in wind speed accurately. Finally, actual wind speed related data is examined to scrutinize meticulousness of projected forecast methodology particularly during sudden/abrupt changes in the wind speed. The parameter indicators of the wind speed forecasting technique exhibit the capability of improved predictions under the diversified conditions.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2751-2772"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13124","citationCount":"0","resultStr":"{\"title\":\"Imputation based wind speed forecasting technique during abrupt changes in short term scenario\",\"authors\":\"Karan Sareen, Bijaya Ketan Panigrahi, Tushar Shikhola, Ravi Nath Tripathi, Ashok Kumar Rajput\",\"doi\":\"10.1049/rpg2.13124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is tough and complex to forecast wind speed due to its intermittent and stochastic nature as well as sudden and abrupt variations in the wind speed. Further, it is required to handle the variety of scenarios e.g. cyber-attacks, unexpected power device malfunction, communication/sensor outages etc. that can cause the missing data.This paper proposes and employs a de-noising autoencoder algorithm for wind speed forecasting to ensure the handling of missing data information. At the next step, the data is processed via variational mode decomposition technique to mitigate the noise and improves the model's prediction accuracy. Furthermore, the bi-directional long-short term memory deep learning approach is tied with convolution neural network to increase prediction accuracy and anticipating the sudden/abrupt changes in wind speed accurately. Finally, actual wind speed related data is examined to scrutinize meticulousness of projected forecast methodology particularly during sudden/abrupt changes in the wind speed. The parameter indicators of the wind speed forecasting technique exhibit the capability of improved predictions under the diversified conditions.</p>\",\"PeriodicalId\":55000,\"journal\":{\"name\":\"IET Renewable Power Generation\",\"volume\":\"18 14\",\"pages\":\"2751-2772\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13124\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Renewable Power Generation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13124\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13124","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Imputation based wind speed forecasting technique during abrupt changes in short term scenario
It is tough and complex to forecast wind speed due to its intermittent and stochastic nature as well as sudden and abrupt variations in the wind speed. Further, it is required to handle the variety of scenarios e.g. cyber-attacks, unexpected power device malfunction, communication/sensor outages etc. that can cause the missing data.This paper proposes and employs a de-noising autoencoder algorithm for wind speed forecasting to ensure the handling of missing data information. At the next step, the data is processed via variational mode decomposition technique to mitigate the noise and improves the model's prediction accuracy. Furthermore, the bi-directional long-short term memory deep learning approach is tied with convolution neural network to increase prediction accuracy and anticipating the sudden/abrupt changes in wind speed accurately. Finally, actual wind speed related data is examined to scrutinize meticulousness of projected forecast methodology particularly during sudden/abrupt changes in the wind speed. The parameter indicators of the wind speed forecasting technique exhibit the capability of improved predictions under the diversified conditions.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf