{"title":"设计基于非晶切割磁芯的高频变压器,用于绝缘击穿测试","authors":"Gijs Lagerweij, Mohamad Ghaffarian Niasar","doi":"10.1049/hve2.12460","DOIUrl":null,"url":null,"abstract":"<p>Innovative test methods are required to keep up with the increased demand for insulation materials which can withstand the high-frequency square-wave voltages generated by power-electronic equipment. Test systems using high-voltage, high-frequency transformers have proven versatile and easy to realise. The authors investigate the application of amorphous cut cores in such transformers. Analytical and numerical models for the transformer and its frequency response are developed, aiding the design process. An amorphous core-based transformer is designed for 8 kV<sub>pk</sub> output at 100 kHz and compared to two previous designs based on ferrite cores. The frequency and pulse response, as well as the high-voltage and thermal performance, are evaluated. The comparison shows that while the low parasitics of the amorphous-based transformer allow for superior frequency response, they are unsuitable for long-duration tests with high pulse repetition frequencies (25–100 kHz) due to increased core losses. The partial discharge inception and flashover voltage are comparable to the ferrite-based transformers.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 5","pages":"1183-1194"},"PeriodicalIF":4.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12460","citationCount":"0","resultStr":"{\"title\":\"Design of a high-frequency transformer based on amorphous cut cores for insulation breakdown testing\",\"authors\":\"Gijs Lagerweij, Mohamad Ghaffarian Niasar\",\"doi\":\"10.1049/hve2.12460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Innovative test methods are required to keep up with the increased demand for insulation materials which can withstand the high-frequency square-wave voltages generated by power-electronic equipment. Test systems using high-voltage, high-frequency transformers have proven versatile and easy to realise. The authors investigate the application of amorphous cut cores in such transformers. Analytical and numerical models for the transformer and its frequency response are developed, aiding the design process. An amorphous core-based transformer is designed for 8 kV<sub>pk</sub> output at 100 kHz and compared to two previous designs based on ferrite cores. The frequency and pulse response, as well as the high-voltage and thermal performance, are evaluated. The comparison shows that while the low parasitics of the amorphous-based transformer allow for superior frequency response, they are unsuitable for long-duration tests with high pulse repetition frequencies (25–100 kHz) due to increased core losses. The partial discharge inception and flashover voltage are comparable to the ferrite-based transformers.</p>\",\"PeriodicalId\":48649,\"journal\":{\"name\":\"High Voltage\",\"volume\":\"9 5\",\"pages\":\"1183-1194\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12460\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Voltage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12460\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12460","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a high-frequency transformer based on amorphous cut cores for insulation breakdown testing
Innovative test methods are required to keep up with the increased demand for insulation materials which can withstand the high-frequency square-wave voltages generated by power-electronic equipment. Test systems using high-voltage, high-frequency transformers have proven versatile and easy to realise. The authors investigate the application of amorphous cut cores in such transformers. Analytical and numerical models for the transformer and its frequency response are developed, aiding the design process. An amorphous core-based transformer is designed for 8 kVpk output at 100 kHz and compared to two previous designs based on ferrite cores. The frequency and pulse response, as well as the high-voltage and thermal performance, are evaluated. The comparison shows that while the low parasitics of the amorphous-based transformer allow for superior frequency response, they are unsuitable for long-duration tests with high pulse repetition frequencies (25–100 kHz) due to increased core losses. The partial discharge inception and flashover voltage are comparable to the ferrite-based transformers.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf