Chuan Liu
(, ), Kangan Hao
(, ), Runhao Yu
(, ), Rong Li
(, ), Anrong Huang
(, ), Chong Wu
(, ), Kai Zheng
(, ), Yinye Yang
(, ), Xiaoling Zuo
(, )
{"title":"具有 UCST 行为和紫外线/温度诱导多色荧光的水凝胶,可用于协同编码和加密","authors":"Chuan Liu \n (, ), Kangan Hao \n (, ), Runhao Yu \n (, ), Rong Li \n (, ), Anrong Huang \n (, ), Chong Wu \n (, ), Kai Zheng \n (, ), Yinye Yang \n (, ), Xiaoling Zuo \n (, )","doi":"10.1007/s40843-024-3061-2","DOIUrl":null,"url":null,"abstract":"<div><p>The development of hydrogels capable of emitting multicolor fluorescence presents a promising avenue for addressing concerns related to information leakage and distortion of sensitive data. The integration of multifactor-induced tunable fluorescence with a unique upper critical solution temperature (UCST) behavior in hydrogels significantly contributes to the development of multi-dimensional and multi-level information storage materials that can dynamically display information as well as offer a high level of security and protection for information. However, the fusion of these advantageous properties into hydrogels intended for information storage and display remains a considerable challenge. In this context, we introduce a novel three-dimensional (3D) fluorescent code-producing hydrogel array fabricated via vat photopolymerization (VP) 3D printing, a technique offers a sustainable and efficient approach. This array unites the desired properties, capable of sequentially revealing concealed information through two distinct steps: (i) a heat-induced phase transition, and (ii) multicolor fluorescence triggered by ultraviolet (UV)/temperature exposure under specific conditions (i.e., certain UV irradiation duration, heating time, and wavelength). The reversible transparency and reprogrammable fluorescence emission properties of these hydrogels are expected to significantly enhance the processes of information encryption and anti-counterfeiting. This advancement could potentially revolutionize the field of information security.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3710 - 3718"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogels with UCST behavior and UV/temperature-induced multicolor fluorescence for synergistic coding and encryption\",\"authors\":\"Chuan Liu \\n (, ), Kangan Hao \\n (, ), Runhao Yu \\n (, ), Rong Li \\n (, ), Anrong Huang \\n (, ), Chong Wu \\n (, ), Kai Zheng \\n (, ), Yinye Yang \\n (, ), Xiaoling Zuo \\n (, )\",\"doi\":\"10.1007/s40843-024-3061-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of hydrogels capable of emitting multicolor fluorescence presents a promising avenue for addressing concerns related to information leakage and distortion of sensitive data. The integration of multifactor-induced tunable fluorescence with a unique upper critical solution temperature (UCST) behavior in hydrogels significantly contributes to the development of multi-dimensional and multi-level information storage materials that can dynamically display information as well as offer a high level of security and protection for information. However, the fusion of these advantageous properties into hydrogels intended for information storage and display remains a considerable challenge. In this context, we introduce a novel three-dimensional (3D) fluorescent code-producing hydrogel array fabricated via vat photopolymerization (VP) 3D printing, a technique offers a sustainable and efficient approach. This array unites the desired properties, capable of sequentially revealing concealed information through two distinct steps: (i) a heat-induced phase transition, and (ii) multicolor fluorescence triggered by ultraviolet (UV)/temperature exposure under specific conditions (i.e., certain UV irradiation duration, heating time, and wavelength). The reversible transparency and reprogrammable fluorescence emission properties of these hydrogels are expected to significantly enhance the processes of information encryption and anti-counterfeiting. This advancement could potentially revolutionize the field of information security.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 11\",\"pages\":\"3710 - 3718\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3061-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3061-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrogels with UCST behavior and UV/temperature-induced multicolor fluorescence for synergistic coding and encryption
The development of hydrogels capable of emitting multicolor fluorescence presents a promising avenue for addressing concerns related to information leakage and distortion of sensitive data. The integration of multifactor-induced tunable fluorescence with a unique upper critical solution temperature (UCST) behavior in hydrogels significantly contributes to the development of multi-dimensional and multi-level information storage materials that can dynamically display information as well as offer a high level of security and protection for information. However, the fusion of these advantageous properties into hydrogels intended for information storage and display remains a considerable challenge. In this context, we introduce a novel three-dimensional (3D) fluorescent code-producing hydrogel array fabricated via vat photopolymerization (VP) 3D printing, a technique offers a sustainable and efficient approach. This array unites the desired properties, capable of sequentially revealing concealed information through two distinct steps: (i) a heat-induced phase transition, and (ii) multicolor fluorescence triggered by ultraviolet (UV)/temperature exposure under specific conditions (i.e., certain UV irradiation duration, heating time, and wavelength). The reversible transparency and reprogrammable fluorescence emission properties of these hydrogels are expected to significantly enhance the processes of information encryption and anti-counterfeiting. This advancement could potentially revolutionize the field of information security.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.