{"title":"与 T1Cu 配位氨基酸相互作用的蛋氨酸 444 的突变影响多铜氧化酶 CopA 的结构和功能","authors":"Wenwei Tang, Peiqi Zhang, Xiaoyu Jin, Xiaorong Li, Shichao Chen, Xinping Zeng","doi":"10.1007/s10532-024-10102-4","DOIUrl":null,"url":null,"abstract":"<div><p>Manganese is an essential trace element for humans, animals, and plants, but excessive amounts of manganese can cause serious harm to organisms. The biological manganese oxidation process mainly oxidizes Mn(II) through the secretion of unique manganese oxidase by manganese-oxidizing bacteria. The T1 Cu site of multicopper oxidase is the main site for substrate oxidation, and its role is to transfer electrons to TNC, where dioxygen reduction occurs. In this study, methionine (Met) No. 444 interacting with the T1Cu-coordinating amino acid in the multicopper oxidase CopA from <i>Brevibacillus panacihumi</i> MK-8 was mutated to phenylalanine (Phe) and leucine (Leu) by the enzyme. Based on the analysis of enzymatic properties and the structural model, the mutant protein M444F with 4.58 times the catalytic efficiency of the original protein CopA and the mutant protein M444L with 1.67 times the catalytic efficiency of the original protein CopA were obtained. The study showed that the manganese removal rate of the manganese-oxidizing engineered bacterium Rosetta-pET-<i>copA</i><sup>M444L</sup> cultured for 7 days was 88.87%, which was 10.77% higher than that of the original engineered bacterium. Overall, this study provides a possibility for the application of genetic engineering in the field of biological manganese removal.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutations of methionine 444 interacting with T1Cu-coordinating amino acids affect the structure and function of multicopper oxidase CopA\",\"authors\":\"Wenwei Tang, Peiqi Zhang, Xiaoyu Jin, Xiaorong Li, Shichao Chen, Xinping Zeng\",\"doi\":\"10.1007/s10532-024-10102-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Manganese is an essential trace element for humans, animals, and plants, but excessive amounts of manganese can cause serious harm to organisms. The biological manganese oxidation process mainly oxidizes Mn(II) through the secretion of unique manganese oxidase by manganese-oxidizing bacteria. The T1 Cu site of multicopper oxidase is the main site for substrate oxidation, and its role is to transfer electrons to TNC, where dioxygen reduction occurs. In this study, methionine (Met) No. 444 interacting with the T1Cu-coordinating amino acid in the multicopper oxidase CopA from <i>Brevibacillus panacihumi</i> MK-8 was mutated to phenylalanine (Phe) and leucine (Leu) by the enzyme. Based on the analysis of enzymatic properties and the structural model, the mutant protein M444F with 4.58 times the catalytic efficiency of the original protein CopA and the mutant protein M444L with 1.67 times the catalytic efficiency of the original protein CopA were obtained. The study showed that the manganese removal rate of the manganese-oxidizing engineered bacterium Rosetta-pET-<i>copA</i><sup>M444L</sup> cultured for 7 days was 88.87%, which was 10.77% higher than that of the original engineered bacterium. Overall, this study provides a possibility for the application of genetic engineering in the field of biological manganese removal.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-024-10102-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-024-10102-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
锰是人类、动物和植物所必需的微量元素,但过量的锰会对生物体造成严重危害。生物锰氧化过程主要通过锰氧化细菌分泌独特的锰氧化酶来氧化锰(II)。多铜氧化酶的 T1 Cu 位点是底物氧化的主要位点,其作用是将电子转移到 TNC,在 TNC 发生二氧还原。本研究将 Brevibacillus panacihumi MK-8 多铜氧化酶 CopA 中与 T1Cu 配位氨基酸相互作用的蛋氨酸(Met)444 号突变为苯丙氨酸(Phe)和亮氨酸(Leu)。根据酶性质分析和结构模型,得到了催化效率是原蛋白 CopA 4.58 倍的突变体蛋白 M444F 和催化效率是原蛋白 CopA 1.67 倍的突变体蛋白 M444L。研究表明,培养 7 天的锰氧化工程菌 Rosetta-pET-copAM444L 的锰去除率为 88.87%,比原始工程菌的锰去除率高 10.77%。总之,这项研究为基因工程在生物除锰领域的应用提供了可能。
Mutations of methionine 444 interacting with T1Cu-coordinating amino acids affect the structure and function of multicopper oxidase CopA
Manganese is an essential trace element for humans, animals, and plants, but excessive amounts of manganese can cause serious harm to organisms. The biological manganese oxidation process mainly oxidizes Mn(II) through the secretion of unique manganese oxidase by manganese-oxidizing bacteria. The T1 Cu site of multicopper oxidase is the main site for substrate oxidation, and its role is to transfer electrons to TNC, where dioxygen reduction occurs. In this study, methionine (Met) No. 444 interacting with the T1Cu-coordinating amino acid in the multicopper oxidase CopA from Brevibacillus panacihumi MK-8 was mutated to phenylalanine (Phe) and leucine (Leu) by the enzyme. Based on the analysis of enzymatic properties and the structural model, the mutant protein M444F with 4.58 times the catalytic efficiency of the original protein CopA and the mutant protein M444L with 1.67 times the catalytic efficiency of the original protein CopA were obtained. The study showed that the manganese removal rate of the manganese-oxidizing engineered bacterium Rosetta-pET-copAM444L cultured for 7 days was 88.87%, which was 10.77% higher than that of the original engineered bacterium. Overall, this study provides a possibility for the application of genetic engineering in the field of biological manganese removal.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.