Shrikant D. Khandare, Doongar R. Chaudhary, Bhavanath Jha
{"title":"从与聚氯乙烯(PVC)生物降解有关的海洋细菌中分离和纯化酯酶","authors":"Shrikant D. Khandare, Doongar R. Chaudhary, Bhavanath Jha","doi":"10.1007/s10532-024-10101-5","DOIUrl":null,"url":null,"abstract":"<div><p>Polyvinyl chloride (PVC) is the third most produced synthetic plastic and releases the most harmful and lethal environmental component after incineration and landfilling. Few studies on microbial degradation of PVC have been reported but very little knowledge about the enzymes. In the present study, esterase enzyme was isolated and partially purified from marine bacterial isolates (T-1.3, BP-4.3 and S-237 identified as <i>Vibrio</i> sp., <i>Alteromonas</i> sp., and <i>Cobetia</i> sp., respectively) having the capability of PVC degradation. Initially, a plate assay was carried out for testing esterase production by studying bacteria using 1-naphthyl acetate as substrate. Enzyme assay showed higher production of esterase i.e. 0.57 U mL<sup>−1</sup> (2nd day), 0.46 U mL<sup>−1</sup> (2nd day) and 0.55 U mL<sup>−1</sup> (5th day) by bacterial isolate <i>Vibrio</i> sp., <i>Alteromonas</i> sp. and <i>Cobetia</i> sp., respectively incubated with PVC. Other enzymes like lipase, laccase and manganese peroxidase were much less or negligible compared to esterase enzyme production. Sephadex G-50 column purification had shown 58.62, 42.35 and 223.70 units mg<sup>−1</sup> of a specific activity by esterase for bacterial isolates <i>Vibrio</i> sp<i>., Alteromonas</i> sp<i>. and Cobetia</i> sp<i>.</i>, respectively. Further, Sephadex G-50 column purification removed all the contamination and gave a clear appearance of the band at 38, 20 and 20 KD for bacterial isolates <i>Vibrio</i> sp., <i>Alteromonas</i> sp., and <i>Cobetia</i> sp., respectively. Esterase has shown maximum stability at a range of pH between 6.0 to 7.5, temperature between 30 to 35 °C and salinity concentration between 3 to 3.5 M for all bacterial isolates. In conclusion, esterase enzyme has promising potential to degrade PVC which can contribute to the decline the plastic pollution in an eco-friendly manner from the environment.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation and purification of esterase enzyme from marine bacteria associated with biodegradation of polyvinyl chloride (PVC)\",\"authors\":\"Shrikant D. Khandare, Doongar R. Chaudhary, Bhavanath Jha\",\"doi\":\"10.1007/s10532-024-10101-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyvinyl chloride (PVC) is the third most produced synthetic plastic and releases the most harmful and lethal environmental component after incineration and landfilling. Few studies on microbial degradation of PVC have been reported but very little knowledge about the enzymes. In the present study, esterase enzyme was isolated and partially purified from marine bacterial isolates (T-1.3, BP-4.3 and S-237 identified as <i>Vibrio</i> sp., <i>Alteromonas</i> sp., and <i>Cobetia</i> sp., respectively) having the capability of PVC degradation. Initially, a plate assay was carried out for testing esterase production by studying bacteria using 1-naphthyl acetate as substrate. Enzyme assay showed higher production of esterase i.e. 0.57 U mL<sup>−1</sup> (2nd day), 0.46 U mL<sup>−1</sup> (2nd day) and 0.55 U mL<sup>−1</sup> (5th day) by bacterial isolate <i>Vibrio</i> sp., <i>Alteromonas</i> sp. and <i>Cobetia</i> sp., respectively incubated with PVC. Other enzymes like lipase, laccase and manganese peroxidase were much less or negligible compared to esterase enzyme production. Sephadex G-50 column purification had shown 58.62, 42.35 and 223.70 units mg<sup>−1</sup> of a specific activity by esterase for bacterial isolates <i>Vibrio</i> sp<i>., Alteromonas</i> sp<i>. and Cobetia</i> sp<i>.</i>, respectively. Further, Sephadex G-50 column purification removed all the contamination and gave a clear appearance of the band at 38, 20 and 20 KD for bacterial isolates <i>Vibrio</i> sp., <i>Alteromonas</i> sp., and <i>Cobetia</i> sp., respectively. Esterase has shown maximum stability at a range of pH between 6.0 to 7.5, temperature between 30 to 35 °C and salinity concentration between 3 to 3.5 M for all bacterial isolates. In conclusion, esterase enzyme has promising potential to degrade PVC which can contribute to the decline the plastic pollution in an eco-friendly manner from the environment.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-024-10101-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-024-10101-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Isolation and purification of esterase enzyme from marine bacteria associated with biodegradation of polyvinyl chloride (PVC)
Polyvinyl chloride (PVC) is the third most produced synthetic plastic and releases the most harmful and lethal environmental component after incineration and landfilling. Few studies on microbial degradation of PVC have been reported but very little knowledge about the enzymes. In the present study, esterase enzyme was isolated and partially purified from marine bacterial isolates (T-1.3, BP-4.3 and S-237 identified as Vibrio sp., Alteromonas sp., and Cobetia sp., respectively) having the capability of PVC degradation. Initially, a plate assay was carried out for testing esterase production by studying bacteria using 1-naphthyl acetate as substrate. Enzyme assay showed higher production of esterase i.e. 0.57 U mL−1 (2nd day), 0.46 U mL−1 (2nd day) and 0.55 U mL−1 (5th day) by bacterial isolate Vibrio sp., Alteromonas sp. and Cobetia sp., respectively incubated with PVC. Other enzymes like lipase, laccase and manganese peroxidase were much less or negligible compared to esterase enzyme production. Sephadex G-50 column purification had shown 58.62, 42.35 and 223.70 units mg−1 of a specific activity by esterase for bacterial isolates Vibrio sp., Alteromonas sp. and Cobetia sp., respectively. Further, Sephadex G-50 column purification removed all the contamination and gave a clear appearance of the band at 38, 20 and 20 KD for bacterial isolates Vibrio sp., Alteromonas sp., and Cobetia sp., respectively. Esterase has shown maximum stability at a range of pH between 6.0 to 7.5, temperature between 30 to 35 °C and salinity concentration between 3 to 3.5 M for all bacterial isolates. In conclusion, esterase enzyme has promising potential to degrade PVC which can contribute to the decline the plastic pollution in an eco-friendly manner from the environment.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.