Shixiang Zuo, Chunyu Wang, Nawaa Ali Husaykan Alshammari, Salah Mohamad El-Bahy, Rong Xu, Saijie Li, Lei Wang, Chao Yao, Zeinhom Mohamad El-Bahy, Haoguan Gui
{"title":"用于乳化油分离的层状凝胶乳液模板 Janus 多孔复合材料","authors":"Shixiang Zuo, Chunyu Wang, Nawaa Ali Husaykan Alshammari, Salah Mohamad El-Bahy, Rong Xu, Saijie Li, Lei Wang, Chao Yao, Zeinhom Mohamad El-Bahy, Haoguan Gui","doi":"10.1007/s42114-024-01033-y","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient separation of emulsified oil is urgently needed to repair the ecological environment, given the explosive development in modern industrial civilization. Herein, Janus porous composites were constructed using two different paraffin oil-in-dimethylsulfoxide (DMSO) gel emulsions. One of the gel emulsions contained graphene oxide (GO) within the DMSO phase, while the other continuous phase was dissolved with triarm hydroxyl-terminated poly(<i>ε</i>-caprolactone) (PCL-triol). To create Janus porous composites, the gel emulsions were overlaid and solidified with poly[(phenyl isocyanate)-<i>co</i>-formaldehyde] through step-growth polymerization. The resultant GO/PCL Janus porous composites exhibited an asymmetric double-layer structure with a tightly bonded interface. GO/PCL Janus porous composites displayed asymmetric surface wettability, functioning as a liquid diode and enabling effective separation of oil-in-water (O/W) miniemulsion. Under simulated 1.2 sun irradiation, the separation efficiency remained above 95%, and the flux increased to nearly four times that observed without solar irradiation. Furthermore, the Janus porous composite demonstrated excellent reusability, maintaining efficacy after ten cycles of separating emulsified oil. These Janus porous composites demonstrated excellent performance in oil-water separation, making them an ideal candidate for such applications.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered gel emulsion-templated Janus porous composites for emulsified oil separation\",\"authors\":\"Shixiang Zuo, Chunyu Wang, Nawaa Ali Husaykan Alshammari, Salah Mohamad El-Bahy, Rong Xu, Saijie Li, Lei Wang, Chao Yao, Zeinhom Mohamad El-Bahy, Haoguan Gui\",\"doi\":\"10.1007/s42114-024-01033-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient separation of emulsified oil is urgently needed to repair the ecological environment, given the explosive development in modern industrial civilization. Herein, Janus porous composites were constructed using two different paraffin oil-in-dimethylsulfoxide (DMSO) gel emulsions. One of the gel emulsions contained graphene oxide (GO) within the DMSO phase, while the other continuous phase was dissolved with triarm hydroxyl-terminated poly(<i>ε</i>-caprolactone) (PCL-triol). To create Janus porous composites, the gel emulsions were overlaid and solidified with poly[(phenyl isocyanate)-<i>co</i>-formaldehyde] through step-growth polymerization. The resultant GO/PCL Janus porous composites exhibited an asymmetric double-layer structure with a tightly bonded interface. GO/PCL Janus porous composites displayed asymmetric surface wettability, functioning as a liquid diode and enabling effective separation of oil-in-water (O/W) miniemulsion. Under simulated 1.2 sun irradiation, the separation efficiency remained above 95%, and the flux increased to nearly four times that observed without solar irradiation. Furthermore, the Janus porous composite demonstrated excellent reusability, maintaining efficacy after ten cycles of separating emulsified oil. These Janus porous composites demonstrated excellent performance in oil-water separation, making them an ideal candidate for such applications.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01033-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01033-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Layered gel emulsion-templated Janus porous composites for emulsified oil separation
Efficient separation of emulsified oil is urgently needed to repair the ecological environment, given the explosive development in modern industrial civilization. Herein, Janus porous composites were constructed using two different paraffin oil-in-dimethylsulfoxide (DMSO) gel emulsions. One of the gel emulsions contained graphene oxide (GO) within the DMSO phase, while the other continuous phase was dissolved with triarm hydroxyl-terminated poly(ε-caprolactone) (PCL-triol). To create Janus porous composites, the gel emulsions were overlaid and solidified with poly[(phenyl isocyanate)-co-formaldehyde] through step-growth polymerization. The resultant GO/PCL Janus porous composites exhibited an asymmetric double-layer structure with a tightly bonded interface. GO/PCL Janus porous composites displayed asymmetric surface wettability, functioning as a liquid diode and enabling effective separation of oil-in-water (O/W) miniemulsion. Under simulated 1.2 sun irradiation, the separation efficiency remained above 95%, and the flux increased to nearly four times that observed without solar irradiation. Furthermore, the Janus porous composite demonstrated excellent reusability, maintaining efficacy after ten cycles of separating emulsified oil. These Janus porous composites demonstrated excellent performance in oil-water separation, making them an ideal candidate for such applications.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.