{"title":"涉及连续线性函数和分数导数的表示法和不等式","authors":"Marc Jornet, Juan J. Nieto","doi":"10.1007/s43036-024-00397-8","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate how continuous linear functionals can be represented in terms of generic operators and certain kernels (Peano kernels), and we study lower bounds for the operators as a consequence, in the space of square-integrable functions. We apply and develop the theory for the Riemann–Liouville fractional derivative (an inverse of the Riemann–Liouville integral), where inequalities are derived with the Gaussian hypergeometric function. This work is inspired by the recent contributions by Fernandez and Buranay (J Comput Appl Math 441:115705, 2024) and Jornet (Arch Math, 2024).</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00397-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Representation and inequalities involving continuous linear functionals and fractional derivatives\",\"authors\":\"Marc Jornet, Juan J. Nieto\",\"doi\":\"10.1007/s43036-024-00397-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate how continuous linear functionals can be represented in terms of generic operators and certain kernels (Peano kernels), and we study lower bounds for the operators as a consequence, in the space of square-integrable functions. We apply and develop the theory for the Riemann–Liouville fractional derivative (an inverse of the Riemann–Liouville integral), where inequalities are derived with the Gaussian hypergeometric function. This work is inspired by the recent contributions by Fernandez and Buranay (J Comput Appl Math 441:115705, 2024) and Jornet (Arch Math, 2024).</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-024-00397-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00397-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00397-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了连续线性函数如何用一般算子和某些核(皮诺核)来表示,并由此在平方可积分函数空间中研究了算子的下界。我们应用并发展了黎曼-黎奥维尔分数导数(黎曼-黎奥维尔积分的逆)理论,其中的不等式是用高斯超几何函数导出的。这项工作受到费尔南德斯和布拉内(J Comput Appl Math 441:115705, 2024)以及约尔内(Arch Math, 2024)近期贡献的启发。
Representation and inequalities involving continuous linear functionals and fractional derivatives
We investigate how continuous linear functionals can be represented in terms of generic operators and certain kernels (Peano kernels), and we study lower bounds for the operators as a consequence, in the space of square-integrable functions. We apply and develop the theory for the Riemann–Liouville fractional derivative (an inverse of the Riemann–Liouville integral), where inequalities are derived with the Gaussian hypergeometric function. This work is inspired by the recent contributions by Fernandez and Buranay (J Comput Appl Math 441:115705, 2024) and Jornet (Arch Math, 2024).