重尾相互作用球形谢林顿-柯克帕特里克模型自由能的波动

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Taegyun Kim, Ji Oon Lee
{"title":"重尾相互作用球形谢林顿-柯克帕特里克模型自由能的波动","authors":"Taegyun Kim,&nbsp;Ji Oon Lee","doi":"10.1007/s10955-024-03358-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the 2-spin spherical Sherrington–Kirkpatrick model without external magnetic field where the interactions between the spins are given as random variables with heavy-tailed distribution. We show that the free energy exhibits a sharp phase transition depending on the location of the largest eigenvalue of the interaction matrix. We also prove the order of the limiting free energy and the limiting distribution of the fluctuation of the free energy for both regimes.\n</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model with Heavy-Tailed Interaction\",\"authors\":\"Taegyun Kim,&nbsp;Ji Oon Lee\",\"doi\":\"10.1007/s10955-024-03358-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the 2-spin spherical Sherrington–Kirkpatrick model without external magnetic field where the interactions between the spins are given as random variables with heavy-tailed distribution. We show that the free energy exhibits a sharp phase transition depending on the location of the largest eigenvalue of the interaction matrix. We also prove the order of the limiting free energy and the limiting distribution of the fluctuation of the free energy for both regimes.\\n</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-024-03358-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03358-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了无外部磁场的 2 自旋球形 Sherrington-Kirkpatrick 模型,其中自旋之间的相互作用是重尾分布的随机变量。我们证明,自由能表现出急剧的相变,这取决于相互作用矩阵最大特征值的位置。我们还证明了极限自由能的阶次以及两种状态下自由能波动的极限分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model with Heavy-Tailed Interaction

We consider the 2-spin spherical Sherrington–Kirkpatrick model without external magnetic field where the interactions between the spins are given as random variables with heavy-tailed distribution. We show that the free energy exhibits a sharp phase transition depending on the location of the largest eigenvalue of the interaction matrix. We also prove the order of the limiting free energy and the limiting distribution of the fluctuation of the free energy for both regimes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信