{"title":"具有不同类型结构和性质的微粒填充聚合物组成的理论基础、模型和计算","authors":"I. D. Simonov-Emelyanov, K. I. Kharlamova","doi":"10.1134/S1070363224090342","DOIUrl":null,"url":null,"abstract":"<p>For the first time, the theoretical foundations for building the structure of particulate-filled polymer composite materials (PFPCMs) are presented from the standpoint of joint examination of Shklovsky-de Gennes model ideas concerning the formation of the structure of dispersed fillers in space and, proposed by us, a generalized model, including the creation of free space, its filling with a polymer matrix (binder) and its functional division into three components: φ<sub>p</sub> = θ + <i>B</i> + <i>M</i> (θ is the proportion of the polymer phase-matrix for the formation of an interlayer between the filler particles; <i>B</i> is the proportion of the polymer phase-matrix at the maximum packaging of the dispersed phase; <i>M</i> is the proportion of the polymer phase-matrices in boundary layers). Correlation dependences between the parameters of heterogeneity in space (lattice parameters: <i>Z</i> and <i>k</i><sub>pac</sub>) and the generalized parameter θ were established, all PNPCMs were classified according to the structural principle [structure type: DS—diluted, LFS—low-filled, MFS—medium-filled (MFS-1 and MFS-2) and HFS—highly filled dispersed systems]. Generalized (θ, <i>V</i>, <i>M</i>) and reduced parameters (θ/<i>V</i> and θ/<i>S</i><sub><i>n</i></sub>) are proposed to describe the structure of the PFPCMs. Experimental methods have been developed for determining the main parameter of a dispersed filler for constructing PFPCMs structures—the maximum packing (<i>k</i><sub>pac</sub>) and the maximum content of dispersed fillers (parameter φ<sub><i>m</i></sub>) of different sizes. It is shown that the construction of all possible types of structures and compositions of PFPCMs should begin with HFS at the content of dispersed filler equal to φ<sub><i>m</i></sub> (fixed starting point), similar to the construction of the stepped CHICHEN ITZA PYRAMID with the apex—HFS, the base—a polymer matrix (PM) and with steps—different types of structures (MFS-2, MFS-1, LFS and DS). The dependences of the physicochemical, rheological, physicomechanical, electrophysical, thermophysical characteristics of PFPCMs on the generalized and reduced parameters, as well as on the lattice parameters <i>Z</i> and <i>k</i><sub>pac</sub> of the dispersed filler are established, and it is shown that the type of structure and its parameters determine the properties of PFPCMs. The obtained dependencies for the first time made it possible to compare the characteristics of PFPCMs with the same types of structures, and not at a constant value of the content of the dispersed phase (φ<sub><i>f</i></sub> = const), which is not correct. This concept is the basis for the creation of high-tech, high-strength, heat-conductive and heat-insulating, as well as electrically conductive, etc. PFPCMs. New theoretical provisions can be extended to the construction of structures of composite materials based on metal and ceramic matrices.</p>","PeriodicalId":761,"journal":{"name":"Russian Journal of General Chemistry","volume":"94 9","pages":"2555 - 2565"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Foundations, Models, and Calculations of the Compositions of Particulate-Filled Polymers with Different Types of Structures and Properties\",\"authors\":\"I. D. Simonov-Emelyanov, K. I. Kharlamova\",\"doi\":\"10.1134/S1070363224090342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the first time, the theoretical foundations for building the structure of particulate-filled polymer composite materials (PFPCMs) are presented from the standpoint of joint examination of Shklovsky-de Gennes model ideas concerning the formation of the structure of dispersed fillers in space and, proposed by us, a generalized model, including the creation of free space, its filling with a polymer matrix (binder) and its functional division into three components: φ<sub>p</sub> = θ + <i>B</i> + <i>M</i> (θ is the proportion of the polymer phase-matrix for the formation of an interlayer between the filler particles; <i>B</i> is the proportion of the polymer phase-matrix at the maximum packaging of the dispersed phase; <i>M</i> is the proportion of the polymer phase-matrices in boundary layers). Correlation dependences between the parameters of heterogeneity in space (lattice parameters: <i>Z</i> and <i>k</i><sub>pac</sub>) and the generalized parameter θ were established, all PNPCMs were classified according to the structural principle [structure type: DS—diluted, LFS—low-filled, MFS—medium-filled (MFS-1 and MFS-2) and HFS—highly filled dispersed systems]. Generalized (θ, <i>V</i>, <i>M</i>) and reduced parameters (θ/<i>V</i> and θ/<i>S</i><sub><i>n</i></sub>) are proposed to describe the structure of the PFPCMs. Experimental methods have been developed for determining the main parameter of a dispersed filler for constructing PFPCMs structures—the maximum packing (<i>k</i><sub>pac</sub>) and the maximum content of dispersed fillers (parameter φ<sub><i>m</i></sub>) of different sizes. It is shown that the construction of all possible types of structures and compositions of PFPCMs should begin with HFS at the content of dispersed filler equal to φ<sub><i>m</i></sub> (fixed starting point), similar to the construction of the stepped CHICHEN ITZA PYRAMID with the apex—HFS, the base—a polymer matrix (PM) and with steps—different types of structures (MFS-2, MFS-1, LFS and DS). The dependences of the physicochemical, rheological, physicomechanical, electrophysical, thermophysical characteristics of PFPCMs on the generalized and reduced parameters, as well as on the lattice parameters <i>Z</i> and <i>k</i><sub>pac</sub> of the dispersed filler are established, and it is shown that the type of structure and its parameters determine the properties of PFPCMs. The obtained dependencies for the first time made it possible to compare the characteristics of PFPCMs with the same types of structures, and not at a constant value of the content of the dispersed phase (φ<sub><i>f</i></sub> = const), which is not correct. This concept is the basis for the creation of high-tech, high-strength, heat-conductive and heat-insulating, as well as electrically conductive, etc. PFPCMs. New theoretical provisions can be extended to the construction of structures of composite materials based on metal and ceramic matrices.</p>\",\"PeriodicalId\":761,\"journal\":{\"name\":\"Russian Journal of General Chemistry\",\"volume\":\"94 9\",\"pages\":\"2555 - 2565\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of General Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1070363224090342\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of General Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070363224090342","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical Foundations, Models, and Calculations of the Compositions of Particulate-Filled Polymers with Different Types of Structures and Properties
For the first time, the theoretical foundations for building the structure of particulate-filled polymer composite materials (PFPCMs) are presented from the standpoint of joint examination of Shklovsky-de Gennes model ideas concerning the formation of the structure of dispersed fillers in space and, proposed by us, a generalized model, including the creation of free space, its filling with a polymer matrix (binder) and its functional division into three components: φp = θ + B + M (θ is the proportion of the polymer phase-matrix for the formation of an interlayer between the filler particles; B is the proportion of the polymer phase-matrix at the maximum packaging of the dispersed phase; M is the proportion of the polymer phase-matrices in boundary layers). Correlation dependences between the parameters of heterogeneity in space (lattice parameters: Z and kpac) and the generalized parameter θ were established, all PNPCMs were classified according to the structural principle [structure type: DS—diluted, LFS—low-filled, MFS—medium-filled (MFS-1 and MFS-2) and HFS—highly filled dispersed systems]. Generalized (θ, V, M) and reduced parameters (θ/V and θ/Sn) are proposed to describe the structure of the PFPCMs. Experimental methods have been developed for determining the main parameter of a dispersed filler for constructing PFPCMs structures—the maximum packing (kpac) and the maximum content of dispersed fillers (parameter φm) of different sizes. It is shown that the construction of all possible types of structures and compositions of PFPCMs should begin with HFS at the content of dispersed filler equal to φm (fixed starting point), similar to the construction of the stepped CHICHEN ITZA PYRAMID with the apex—HFS, the base—a polymer matrix (PM) and with steps—different types of structures (MFS-2, MFS-1, LFS and DS). The dependences of the physicochemical, rheological, physicomechanical, electrophysical, thermophysical characteristics of PFPCMs on the generalized and reduced parameters, as well as on the lattice parameters Z and kpac of the dispersed filler are established, and it is shown that the type of structure and its parameters determine the properties of PFPCMs. The obtained dependencies for the first time made it possible to compare the characteristics of PFPCMs with the same types of structures, and not at a constant value of the content of the dispersed phase (φf = const), which is not correct. This concept is the basis for the creation of high-tech, high-strength, heat-conductive and heat-insulating, as well as electrically conductive, etc. PFPCMs. New theoretical provisions can be extended to the construction of structures of composite materials based on metal and ceramic matrices.
期刊介绍:
Russian Journal of General Chemistry is a journal that covers many problems that are of general interest to the whole community of chemists. The journal is the successor to Russia’s first chemical journal, Zhurnal Russkogo Khimicheskogo Obshchestva (Journal of the Russian Chemical Society ) founded in 1869 to cover all aspects of chemistry. Now the journal is focused on the interdisciplinary areas of chemistry (organometallics, organometalloids, organoinorganic complexes, mechanochemistry, nanochemistry, etc.), new achievements and long-term results in the field. The journal publishes reviews, current scientific papers, letters to the editor, and discussion papers.