Kang Bian, Yanan Chen, Wei Zhang, Qingrong Xiong, Bingyang Li
{"title":"受水软化效应影响的页岩的力学性能劣化和全阶段构成模型","authors":"Kang Bian, Yanan Chen, Wei Zhang, Qingrong Xiong, Bingyang Li","doi":"10.1007/s10064-024-03957-7","DOIUrl":null,"url":null,"abstract":"<div><p>Water-softening effect has been widely recognized as one of the primary causes triggering large deformation and failure in soft-rock engineering; however, there is still a lack of a full-stage constitutive model for rock considering the water-softening effect and non-linear deformation characteristics at the compaction stage under triaxial stress conditions at present. In this paper, laboratory tests are firstly carried out to estimate the deterioration characteristics of mechanical properties with increase of saturation coefficient for shale samples. And then, a full-stage constitutive model of shale subjected to water-softening effect is proposed, which consists of the pre-yield and the post-yield constitutive relationships. The pre-yield constitutive relationships could well describe the non-linear deformation characteristics of compaction stage, which are derived based on the generalized Hooke’s law considering water-softening effect under anisotropic stress conditions. On the other hand, by introducing correction coefficients to solve the problem of numerical discontinuity at the yield point of the pre-yield and the post-yield constitutive relationships, the post-yield constitutive relationships are derived on the basis of the statistical damage mechanics theory. The comparison results with the experimental data show that the proposed model could well characterize the full-stage stress–strain relationship for shale under triaxial loading considering the water-softening effect.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical property deterioration and a full-stage constitutive model of shale subject to water-softening effect\",\"authors\":\"Kang Bian, Yanan Chen, Wei Zhang, Qingrong Xiong, Bingyang Li\",\"doi\":\"10.1007/s10064-024-03957-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water-softening effect has been widely recognized as one of the primary causes triggering large deformation and failure in soft-rock engineering; however, there is still a lack of a full-stage constitutive model for rock considering the water-softening effect and non-linear deformation characteristics at the compaction stage under triaxial stress conditions at present. In this paper, laboratory tests are firstly carried out to estimate the deterioration characteristics of mechanical properties with increase of saturation coefficient for shale samples. And then, a full-stage constitutive model of shale subjected to water-softening effect is proposed, which consists of the pre-yield and the post-yield constitutive relationships. The pre-yield constitutive relationships could well describe the non-linear deformation characteristics of compaction stage, which are derived based on the generalized Hooke’s law considering water-softening effect under anisotropic stress conditions. On the other hand, by introducing correction coefficients to solve the problem of numerical discontinuity at the yield point of the pre-yield and the post-yield constitutive relationships, the post-yield constitutive relationships are derived on the basis of the statistical damage mechanics theory. The comparison results with the experimental data show that the proposed model could well characterize the full-stage stress–strain relationship for shale under triaxial loading considering the water-softening effect.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03957-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03957-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Mechanical property deterioration and a full-stage constitutive model of shale subject to water-softening effect
Water-softening effect has been widely recognized as one of the primary causes triggering large deformation and failure in soft-rock engineering; however, there is still a lack of a full-stage constitutive model for rock considering the water-softening effect and non-linear deformation characteristics at the compaction stage under triaxial stress conditions at present. In this paper, laboratory tests are firstly carried out to estimate the deterioration characteristics of mechanical properties with increase of saturation coefficient for shale samples. And then, a full-stage constitutive model of shale subjected to water-softening effect is proposed, which consists of the pre-yield and the post-yield constitutive relationships. The pre-yield constitutive relationships could well describe the non-linear deformation characteristics of compaction stage, which are derived based on the generalized Hooke’s law considering water-softening effect under anisotropic stress conditions. On the other hand, by introducing correction coefficients to solve the problem of numerical discontinuity at the yield point of the pre-yield and the post-yield constitutive relationships, the post-yield constitutive relationships are derived on the basis of the statistical damage mechanics theory. The comparison results with the experimental data show that the proposed model could well characterize the full-stage stress–strain relationship for shale under triaxial loading considering the water-softening effect.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.