{"title":"新型链霉菌 RG-5 菌株对抗生素耐药和形成生物膜的病原菌的体外抗菌和抗生物膜活性及体内分析","authors":"El-Hadj Driche, Boubekeur Badji, Florence Mathieu, Abdelghani Zitouni","doi":"10.1007/s00203-024-04174-2","DOIUrl":null,"url":null,"abstract":"<div><p>The proliferation of multidrug-resistant and biofilm-forming pathogenic bacteria poses a serious threat to public health. The limited effectiveness of current antibiotics motivates the search for new antibacterial compounds. In this study, a novel strain, RG-5, was isolated from desert soil. This strain exhibited potent antibacterial and antibiofilm properties against multidrug-resistant and biofilm-forming pathogenic bacteria. Through phenotypical characterizations, 16S rRNA gene sequence and phylogenetic analysis, the strain was identified as <i>Streptomyces</i> pratensis with 99.8% similarity. The active compound, RG5-1, was extracted, purified by reverse phase silica column HPLC, identified by ESI-MS spectrometry, and confirmed by <sup>1</sup>H and <sup>13</sup>C NMR analysis as 2,5-Piperazinedione, 3,6-bis(2-methylpropyl), belonging to cyclic peptides. This compound showed interesting minimum inhibitory concentrations (MICs) of 04 to 15 µg/mL and minimum biofilm inhibitory concentrations (MBICs 50%) of ½ MIC against the tested bacteria. Its molecular mechanism of action was elucidated through a molecular docking study against five drug-protein targets. The results demonstrated that the compound RG5-1 has a strong affinity and interaction patterns with glucosamine-6-phosphate synthase at − 6.0 kcal/mol compared to reference inhibitor (− 5.4 kcal/mol), medium with penicillin-binding protein 1a (− 6.1 kcal/mol), and LasR regulator protein of quorum sensing (− 5.4 kcal/mol), confirming its antibacterial and antibiofilm activities. The compound exhibited minimal toxicity and favorable physicochemical and pharmacological properties. This is the first report that describes its production from <i>Streptomyces</i>, its activities against biofilm-forming and multidrug-resistant bacteria, and its mechanism of action. These findings indicate that 2,5-piperazinedione, 3,6-bis(2-methylpropyl) has the potential to be a promising lead compound in the treatment of antibiotic-resistant and biofilm-forming pathogens.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"206 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-vitro antibacterial and antibiofilm activities and in-silico analysis of a potent cyclic peptide from a novel Streptomyces sp. strain RG-5 against antibiotic-resistant and biofilm-forming pathogenic bacteria\",\"authors\":\"El-Hadj Driche, Boubekeur Badji, Florence Mathieu, Abdelghani Zitouni\",\"doi\":\"10.1007/s00203-024-04174-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proliferation of multidrug-resistant and biofilm-forming pathogenic bacteria poses a serious threat to public health. The limited effectiveness of current antibiotics motivates the search for new antibacterial compounds. In this study, a novel strain, RG-5, was isolated from desert soil. This strain exhibited potent antibacterial and antibiofilm properties against multidrug-resistant and biofilm-forming pathogenic bacteria. Through phenotypical characterizations, 16S rRNA gene sequence and phylogenetic analysis, the strain was identified as <i>Streptomyces</i> pratensis with 99.8% similarity. The active compound, RG5-1, was extracted, purified by reverse phase silica column HPLC, identified by ESI-MS spectrometry, and confirmed by <sup>1</sup>H and <sup>13</sup>C NMR analysis as 2,5-Piperazinedione, 3,6-bis(2-methylpropyl), belonging to cyclic peptides. This compound showed interesting minimum inhibitory concentrations (MICs) of 04 to 15 µg/mL and minimum biofilm inhibitory concentrations (MBICs 50%) of ½ MIC against the tested bacteria. Its molecular mechanism of action was elucidated through a molecular docking study against five drug-protein targets. The results demonstrated that the compound RG5-1 has a strong affinity and interaction patterns with glucosamine-6-phosphate synthase at − 6.0 kcal/mol compared to reference inhibitor (− 5.4 kcal/mol), medium with penicillin-binding protein 1a (− 6.1 kcal/mol), and LasR regulator protein of quorum sensing (− 5.4 kcal/mol), confirming its antibacterial and antibiofilm activities. The compound exhibited minimal toxicity and favorable physicochemical and pharmacological properties. This is the first report that describes its production from <i>Streptomyces</i>, its activities against biofilm-forming and multidrug-resistant bacteria, and its mechanism of action. These findings indicate that 2,5-piperazinedione, 3,6-bis(2-methylpropyl) has the potential to be a promising lead compound in the treatment of antibiotic-resistant and biofilm-forming pathogens.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":8279,\"journal\":{\"name\":\"Archives of Microbiology\",\"volume\":\"206 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00203-024-04174-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04174-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
In-vitro antibacterial and antibiofilm activities and in-silico analysis of a potent cyclic peptide from a novel Streptomyces sp. strain RG-5 against antibiotic-resistant and biofilm-forming pathogenic bacteria
The proliferation of multidrug-resistant and biofilm-forming pathogenic bacteria poses a serious threat to public health. The limited effectiveness of current antibiotics motivates the search for new antibacterial compounds. In this study, a novel strain, RG-5, was isolated from desert soil. This strain exhibited potent antibacterial and antibiofilm properties against multidrug-resistant and biofilm-forming pathogenic bacteria. Through phenotypical characterizations, 16S rRNA gene sequence and phylogenetic analysis, the strain was identified as Streptomyces pratensis with 99.8% similarity. The active compound, RG5-1, was extracted, purified by reverse phase silica column HPLC, identified by ESI-MS spectrometry, and confirmed by 1H and 13C NMR analysis as 2,5-Piperazinedione, 3,6-bis(2-methylpropyl), belonging to cyclic peptides. This compound showed interesting minimum inhibitory concentrations (MICs) of 04 to 15 µg/mL and minimum biofilm inhibitory concentrations (MBICs 50%) of ½ MIC against the tested bacteria. Its molecular mechanism of action was elucidated through a molecular docking study against five drug-protein targets. The results demonstrated that the compound RG5-1 has a strong affinity and interaction patterns with glucosamine-6-phosphate synthase at − 6.0 kcal/mol compared to reference inhibitor (− 5.4 kcal/mol), medium with penicillin-binding protein 1a (− 6.1 kcal/mol), and LasR regulator protein of quorum sensing (− 5.4 kcal/mol), confirming its antibacterial and antibiofilm activities. The compound exhibited minimal toxicity and favorable physicochemical and pharmacological properties. This is the first report that describes its production from Streptomyces, its activities against biofilm-forming and multidrug-resistant bacteria, and its mechanism of action. These findings indicate that 2,5-piperazinedione, 3,6-bis(2-methylpropyl) has the potential to be a promising lead compound in the treatment of antibiotic-resistant and biofilm-forming pathogens.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.