多方量子系统中部分经典相关态的一些特征

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Yinzhu Wang, Lihua Hao, Chen Cheng, Yanjing Sun, Ruifen Ma
{"title":"多方量子系统中部分经典相关态的一些特征","authors":"Yinzhu Wang,&nbsp;Lihua Hao,&nbsp;Chen Cheng,&nbsp;Yanjing Sun,&nbsp;Ruifen Ma","doi":"10.1007/s10773-024-05815-4","DOIUrl":null,"url":null,"abstract":"<div><p>One crucial problem is to characterize and quantify the correlations in bipartite or multipartite states in the theory of quantum information. In this paper, we consider m-partite composite quantum systems <span>\\(H=H_{1}\\otimes H_{2}\\otimes \\cdots \\otimes H_{m}\\)</span> with <span>\\(\\dim H&lt;+\\infty \\)</span>. We first introduce a concept of <i>k</i>-classical correlation states (<span>\\(1\\le k\\le m\\)</span>)(for short single classical correlation states when <span>\\(k=1\\)</span>, and fully classical correlation states when <span>\\(k=m\\)</span>); Next we give some mathematical representation for partial classical correlation states and a necessary condition for fully-classical correlation states; Finally, we present a correlation measure for <i>k</i>-classical correlation states based on the angle between quantum states, and prove that this correlation measure is well-defined, which possesses the basic physical properties of correlation measure.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Characterizations for Partial Classical Correlation States in Multipartite Quantum Systems\",\"authors\":\"Yinzhu Wang,&nbsp;Lihua Hao,&nbsp;Chen Cheng,&nbsp;Yanjing Sun,&nbsp;Ruifen Ma\",\"doi\":\"10.1007/s10773-024-05815-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One crucial problem is to characterize and quantify the correlations in bipartite or multipartite states in the theory of quantum information. In this paper, we consider m-partite composite quantum systems <span>\\\\(H=H_{1}\\\\otimes H_{2}\\\\otimes \\\\cdots \\\\otimes H_{m}\\\\)</span> with <span>\\\\(\\\\dim H&lt;+\\\\infty \\\\)</span>. We first introduce a concept of <i>k</i>-classical correlation states (<span>\\\\(1\\\\le k\\\\le m\\\\)</span>)(for short single classical correlation states when <span>\\\\(k=1\\\\)</span>, and fully classical correlation states when <span>\\\\(k=m\\\\)</span>); Next we give some mathematical representation for partial classical correlation states and a necessary condition for fully-classical correlation states; Finally, we present a correlation measure for <i>k</i>-classical correlation states based on the angle between quantum states, and prove that this correlation measure is well-defined, which possesses the basic physical properties of correlation measure.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"63 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-024-05815-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05815-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子信息理论中的一个关键问题是描述和量化双元或多元态中的相关性。在本文中,我们考虑m-partite复合量子系统(H=H_{1}\otimes H_{2}\otimes \cdots \otimes H_{m})与(\dim H<+\infty \)。我们首先介绍了k-经典相关态的概念(\(1\le k\le m\) )(当\(k=1\)时为单经典相关态,当\(k=m\)时为全经典相关态);接下来我们给出了部分经典相关态的数学表示和全经典相关态的必要条件;最后,我们提出了一种基于量子态之间夹角的 k 经典相关态的相关量,并证明这种相关量定义明确,具有相关量的基本物理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Characterizations for Partial Classical Correlation States in Multipartite Quantum Systems

One crucial problem is to characterize and quantify the correlations in bipartite or multipartite states in the theory of quantum information. In this paper, we consider m-partite composite quantum systems \(H=H_{1}\otimes H_{2}\otimes \cdots \otimes H_{m}\) with \(\dim H<+\infty \). We first introduce a concept of k-classical correlation states (\(1\le k\le m\))(for short single classical correlation states when \(k=1\), and fully classical correlation states when \(k=m\)); Next we give some mathematical representation for partial classical correlation states and a necessary condition for fully-classical correlation states; Finally, we present a correlation measure for k-classical correlation states based on the angle between quantum states, and prove that this correlation measure is well-defined, which possesses the basic physical properties of correlation measure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信