Shixuan Guo , Kejing Liu , Zihang Lin , Zhe Kang , Jinbo Liu , Ziang Yin , Zhuochen Cai , Yi Liu , Xianggang Zhang , Fa Luo , Shitao Xiong , Shusheng Wang , Xuxin He , Aizhong Yue , Qinghua Zhao , Rongrong Guo , Tao Wang
{"title":"LaBr3 中 Ce 发光特性的温度依赖性:Ce 晶体","authors":"Shixuan Guo , Kejing Liu , Zihang Lin , Zhe Kang , Jinbo Liu , Ziang Yin , Zhuochen Cai , Yi Liu , Xianggang Zhang , Fa Luo , Shitao Xiong , Shusheng Wang , Xuxin He , Aizhong Yue , Qinghua Zhao , Rongrong Guo , Tao Wang","doi":"10.1016/j.jlumin.2024.120956","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the large interest in the scintillation properties of LaBr<sub>3</sub>:Ce, a detailed understanding of the underlying mechanism of temperature-dependence properties of Ce luminescence remains elusive. This study introduces a self-designed spectral apparatus to explore these properties in LaBr<sub>3</sub>:5%Ce. We observed a redshift phenomenon and band changes in the emission peak bands, indicating a reduction of the bond length between Ce and the host with increasing temperature. Moreover, the probability of low-energy peak emission decreases and the probability of high-energy peak emission increases, with increasing temperature was observed, suggesting a correlation with the proximity of Ce's 4f energy level to the valence band. Utilizing intensity parameters from the spectra, we identified the impact of temperature on LaBr<sub>3</sub>:Ce's self-absorption effect, revealing a significant self-absorption effect at the high-energy peak for the first time. A simple self-absorption model indicated that, despite high quantum efficiency of Ce, the overall self-absorption is minimal, establishing a correlation between the self-absorption coefficient of the high-energy peak and overall absorption. This research offers insights for developing radiation-resistant high-temperature luminescent devices and advances the field of high-temperature luminescent materials.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120956"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependence of Ce luminescence characteristics in LaBr3: Ce crystal\",\"authors\":\"Shixuan Guo , Kejing Liu , Zihang Lin , Zhe Kang , Jinbo Liu , Ziang Yin , Zhuochen Cai , Yi Liu , Xianggang Zhang , Fa Luo , Shitao Xiong , Shusheng Wang , Xuxin He , Aizhong Yue , Qinghua Zhao , Rongrong Guo , Tao Wang\",\"doi\":\"10.1016/j.jlumin.2024.120956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the large interest in the scintillation properties of LaBr<sub>3</sub>:Ce, a detailed understanding of the underlying mechanism of temperature-dependence properties of Ce luminescence remains elusive. This study introduces a self-designed spectral apparatus to explore these properties in LaBr<sub>3</sub>:5%Ce. We observed a redshift phenomenon and band changes in the emission peak bands, indicating a reduction of the bond length between Ce and the host with increasing temperature. Moreover, the probability of low-energy peak emission decreases and the probability of high-energy peak emission increases, with increasing temperature was observed, suggesting a correlation with the proximity of Ce's 4f energy level to the valence band. Utilizing intensity parameters from the spectra, we identified the impact of temperature on LaBr<sub>3</sub>:Ce's self-absorption effect, revealing a significant self-absorption effect at the high-energy peak for the first time. A simple self-absorption model indicated that, despite high quantum efficiency of Ce, the overall self-absorption is minimal, establishing a correlation between the self-absorption coefficient of the high-energy peak and overall absorption. This research offers insights for developing radiation-resistant high-temperature luminescent devices and advances the field of high-temperature luminescent materials.</div></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"277 \",\"pages\":\"Article 120956\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231324005209\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324005209","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
尽管人们对 LaBr3:Ce 的闪烁特性非常感兴趣,但对 Ce 发光特性随温度变化的基本机制的详细了解却仍然遥遥无期。本研究介绍了一种自行设计的光谱仪器,以探索 LaBr3:5%Ce 的这些特性。我们观察到了发射峰波段的红移现象和波段变化,这表明随着温度的升高,Ce 与宿主之间的键长缩短了。此外,我们还观察到随着温度的升高,低能峰发射的概率降低,而高能峰发射的概率升高,这表明这与 Ce 的 4f 能级接近价带有关。利用光谱中的强度参数,我们确定了温度对 LaBr3:Ce 自吸收效应的影响,首次揭示了高能峰存在显著的自吸收效应。一个简单的自吸收模型表明,尽管 Ce 的量子效率很高,但总体自吸收却很小,从而确立了高能峰自吸收系数与总体吸收之间的相关性。这项研究为开发抗辐射高温发光器件提供了启示,推动了高温发光材料领域的发展。
Temperature dependence of Ce luminescence characteristics in LaBr3: Ce crystal
Despite the large interest in the scintillation properties of LaBr3:Ce, a detailed understanding of the underlying mechanism of temperature-dependence properties of Ce luminescence remains elusive. This study introduces a self-designed spectral apparatus to explore these properties in LaBr3:5%Ce. We observed a redshift phenomenon and band changes in the emission peak bands, indicating a reduction of the bond length between Ce and the host with increasing temperature. Moreover, the probability of low-energy peak emission decreases and the probability of high-energy peak emission increases, with increasing temperature was observed, suggesting a correlation with the proximity of Ce's 4f energy level to the valence band. Utilizing intensity parameters from the spectra, we identified the impact of temperature on LaBr3:Ce's self-absorption effect, revealing a significant self-absorption effect at the high-energy peak for the first time. A simple self-absorption model indicated that, despite high quantum efficiency of Ce, the overall self-absorption is minimal, establishing a correlation between the self-absorption coefficient of the high-energy peak and overall absorption. This research offers insights for developing radiation-resistant high-temperature luminescent devices and advances the field of high-temperature luminescent materials.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.