Yingjie Mao , Zhichao Zhang , Guojun Zhou , Chen Fang , Yihan Liu , Denghui Xu , Jia Zhao , Aicong Geng , Jun Zhou
{"title":"通过有机阳离子和掺杂锑有效操纵混合氯化锰中的光致发光","authors":"Yingjie Mao , Zhichao Zhang , Guojun Zhou , Chen Fang , Yihan Liu , Denghui Xu , Jia Zhao , Aicong Geng , Jun Zhou","doi":"10.1016/j.jlumin.2024.120937","DOIUrl":null,"url":null,"abstract":"<div><div>Zero-dimensional (0D) Mn(II)-based hybrids with the typical d–d transitions have been rapidly developed benefitting from the environmental friendliness, blue light excitation and the high thermal stability. Herein, we first designed two novel green-emitting 0D Mn(II)-based hybrids (C<sub>16</sub>H<sub>28</sub>N)<sub>2</sub>MnCl<sub>4</sub> and (C<sub>21</sub>H<sub>46</sub>N)<sub>2</sub>MnCl<sub>4</sub>, where the organic cations cocrystallize with four-coordinated [MnCl<sub>4</sub>]<sup>2-</sup> tetrahedrons. Upon blue-light excitation, these two crystals exhibited narrow-band green emission with distinct emission intensity and FWHM as well as thermal quenching behavior, which is analyzed by the influence of the crystal structure of different organic cations on the luminescence performance. Furthermore, multiple emission color can be observed from green to orange-red in (C<sub>16</sub>H<sub>28</sub>N)<sub>2</sub>MnCl<sub>4</sub>:Sb<sup>3+</sup> by regulating the [SbCl<sub>5</sub>]<sup>2-</sup>/[MnCl<sub>4</sub>]<sup>2-</sup> molar ratio or excitation wavelength. Our study not only enriches the influence of organic cations on crystal structure and luminescence performance, but also provides a new direction towards realizing the multi-color emission by Sb<sup>3+</sup> ions doping strategy.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120937"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient manipulation of photoluminescence by organic cations and Sb doping in hybrid manganese chlorides\",\"authors\":\"Yingjie Mao , Zhichao Zhang , Guojun Zhou , Chen Fang , Yihan Liu , Denghui Xu , Jia Zhao , Aicong Geng , Jun Zhou\",\"doi\":\"10.1016/j.jlumin.2024.120937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zero-dimensional (0D) Mn(II)-based hybrids with the typical d–d transitions have been rapidly developed benefitting from the environmental friendliness, blue light excitation and the high thermal stability. Herein, we first designed two novel green-emitting 0D Mn(II)-based hybrids (C<sub>16</sub>H<sub>28</sub>N)<sub>2</sub>MnCl<sub>4</sub> and (C<sub>21</sub>H<sub>46</sub>N)<sub>2</sub>MnCl<sub>4</sub>, where the organic cations cocrystallize with four-coordinated [MnCl<sub>4</sub>]<sup>2-</sup> tetrahedrons. Upon blue-light excitation, these two crystals exhibited narrow-band green emission with distinct emission intensity and FWHM as well as thermal quenching behavior, which is analyzed by the influence of the crystal structure of different organic cations on the luminescence performance. Furthermore, multiple emission color can be observed from green to orange-red in (C<sub>16</sub>H<sub>28</sub>N)<sub>2</sub>MnCl<sub>4</sub>:Sb<sup>3+</sup> by regulating the [SbCl<sub>5</sub>]<sup>2-</sup>/[MnCl<sub>4</sub>]<sup>2-</sup> molar ratio or excitation wavelength. Our study not only enriches the influence of organic cations on crystal structure and luminescence performance, but also provides a new direction towards realizing the multi-color emission by Sb<sup>3+</sup> ions doping strategy.</div></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"277 \",\"pages\":\"Article 120937\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231324005015\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324005015","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Efficient manipulation of photoluminescence by organic cations and Sb doping in hybrid manganese chlorides
Zero-dimensional (0D) Mn(II)-based hybrids with the typical d–d transitions have been rapidly developed benefitting from the environmental friendliness, blue light excitation and the high thermal stability. Herein, we first designed two novel green-emitting 0D Mn(II)-based hybrids (C16H28N)2MnCl4 and (C21H46N)2MnCl4, where the organic cations cocrystallize with four-coordinated [MnCl4]2- tetrahedrons. Upon blue-light excitation, these two crystals exhibited narrow-band green emission with distinct emission intensity and FWHM as well as thermal quenching behavior, which is analyzed by the influence of the crystal structure of different organic cations on the luminescence performance. Furthermore, multiple emission color can be observed from green to orange-red in (C16H28N)2MnCl4:Sb3+ by regulating the [SbCl5]2-/[MnCl4]2- molar ratio or excitation wavelength. Our study not only enriches the influence of organic cations on crystal structure and luminescence performance, but also provides a new direction towards realizing the multi-color emission by Sb3+ ions doping strategy.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.