{"title":"基于随机球测试的球面菲佐干涉仪对准误差新分析和球面度校准系统不确定性评估","authors":"Natsumi Kawashima, Yohan Kondo, Akiko Hirai, Youichi Bitou","doi":"10.1016/j.optlaseng.2024.108646","DOIUrl":null,"url":null,"abstract":"<div><div>The National Metrology Institute of Japan (NMIJ) has developed a high-precision sphericity calibration system utilizing a Fizeau interferometer and conducted a thorough evaluation of the system's measurement uncertainty. Generally, there are two principal sources of uncertainty in the measurement outcomes when utilizing a spherical Fizeau interferometer. First, the accuracy of the system is significantly influenced by the prior knowledge of the reference sphere surface's absolute profile. To address this, the study established a straightforward yet effective calibration system for the reference sphere surface using a random ball test method. Second, the system's precision is affected by misalignment aberration, which occurs when there is any lateral or longitudinal displacement of the test sphere from the confocal position relative to the reference sphere. This misalignment can introduce both high-order shape errors (misalignment aberrations) and low-order shape errors (alignment errors). Through analytical consideration of an observation coordinate system on the camera plane, this study delves into misalignment aberrations, suggesting that the impact of misalignment should be determined experimentally for each reference sphere unit due to potential imperfections that may be revealed by misalignment. Furthermore, the study proposes that uncertainties related to misalignment aberrations are theoretically confirmed to be smaller than previous studies by conducting an in-depth uncertainty analysis of the misalignment, with a focus on the observation coordinate system on the camera plane. Notably, the research demonstrates that a measurement uncertainty level of λ/100 is achievable, maintaining a broader tolerance for misalignment than previously reported studies. The uncertainty of calibration of the reference sphere unit's absolute profile was 4.2 nm and the uncertainty of sample measurement was determined to be 4.6 nm with misalignment tolerance of <span><math><mrow><mo>±</mo><mi>λ</mi><mo>/</mo><mn>10</mn></mrow></math></span>. This advancement marks a stride toward improving the accuracy and reliability of sphericity measurements, offering potential for widespread application in precision engineering and metrology.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel analysis of alignment error on spherical Fizeau interferometer and uncertainty evaluation of sphericity calibration system based on random ball test\",\"authors\":\"Natsumi Kawashima, Yohan Kondo, Akiko Hirai, Youichi Bitou\",\"doi\":\"10.1016/j.optlaseng.2024.108646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The National Metrology Institute of Japan (NMIJ) has developed a high-precision sphericity calibration system utilizing a Fizeau interferometer and conducted a thorough evaluation of the system's measurement uncertainty. Generally, there are two principal sources of uncertainty in the measurement outcomes when utilizing a spherical Fizeau interferometer. First, the accuracy of the system is significantly influenced by the prior knowledge of the reference sphere surface's absolute profile. To address this, the study established a straightforward yet effective calibration system for the reference sphere surface using a random ball test method. Second, the system's precision is affected by misalignment aberration, which occurs when there is any lateral or longitudinal displacement of the test sphere from the confocal position relative to the reference sphere. This misalignment can introduce both high-order shape errors (misalignment aberrations) and low-order shape errors (alignment errors). Through analytical consideration of an observation coordinate system on the camera plane, this study delves into misalignment aberrations, suggesting that the impact of misalignment should be determined experimentally for each reference sphere unit due to potential imperfections that may be revealed by misalignment. Furthermore, the study proposes that uncertainties related to misalignment aberrations are theoretically confirmed to be smaller than previous studies by conducting an in-depth uncertainty analysis of the misalignment, with a focus on the observation coordinate system on the camera plane. Notably, the research demonstrates that a measurement uncertainty level of λ/100 is achievable, maintaining a broader tolerance for misalignment than previously reported studies. The uncertainty of calibration of the reference sphere unit's absolute profile was 4.2 nm and the uncertainty of sample measurement was determined to be 4.6 nm with misalignment tolerance of <span><math><mrow><mo>±</mo><mi>λ</mi><mo>/</mo><mn>10</mn></mrow></math></span>. This advancement marks a stride toward improving the accuracy and reliability of sphericity measurements, offering potential for widespread application in precision engineering and metrology.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624006249\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006249","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Novel analysis of alignment error on spherical Fizeau interferometer and uncertainty evaluation of sphericity calibration system based on random ball test
The National Metrology Institute of Japan (NMIJ) has developed a high-precision sphericity calibration system utilizing a Fizeau interferometer and conducted a thorough evaluation of the system's measurement uncertainty. Generally, there are two principal sources of uncertainty in the measurement outcomes when utilizing a spherical Fizeau interferometer. First, the accuracy of the system is significantly influenced by the prior knowledge of the reference sphere surface's absolute profile. To address this, the study established a straightforward yet effective calibration system for the reference sphere surface using a random ball test method. Second, the system's precision is affected by misalignment aberration, which occurs when there is any lateral or longitudinal displacement of the test sphere from the confocal position relative to the reference sphere. This misalignment can introduce both high-order shape errors (misalignment aberrations) and low-order shape errors (alignment errors). Through analytical consideration of an observation coordinate system on the camera plane, this study delves into misalignment aberrations, suggesting that the impact of misalignment should be determined experimentally for each reference sphere unit due to potential imperfections that may be revealed by misalignment. Furthermore, the study proposes that uncertainties related to misalignment aberrations are theoretically confirmed to be smaller than previous studies by conducting an in-depth uncertainty analysis of the misalignment, with a focus on the observation coordinate system on the camera plane. Notably, the research demonstrates that a measurement uncertainty level of λ/100 is achievable, maintaining a broader tolerance for misalignment than previously reported studies. The uncertainty of calibration of the reference sphere unit's absolute profile was 4.2 nm and the uncertainty of sample measurement was determined to be 4.6 nm with misalignment tolerance of . This advancement marks a stride toward improving the accuracy and reliability of sphericity measurements, offering potential for widespread application in precision engineering and metrology.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques