Abhijith Kunneparambil Sukumaran , Sara Rengifo , Brandon Aguiar , Sohail M.A.K. Mohammed , William Scott , Michael Renfro , Sang-Hyon Chu , Cheol Park , Arvind Agarwal
{"title":"Ti-hBN 多功能涂层在极端月球温度下的定制行星试验台中的侵蚀行为","authors":"Abhijith Kunneparambil Sukumaran , Sara Rengifo , Brandon Aguiar , Sohail M.A.K. Mohammed , William Scott , Michael Renfro , Sang-Hyon Chu , Cheol Park , Arvind Agarwal","doi":"10.1016/j.triboint.2024.110339","DOIUrl":null,"url":null,"abstract":"<div><div>Spacecraft landings and takeoffs on the lunar surface, along with extreme temperature variations between day and night (−196 to 150º C), cause high-velocity dust impacts and erosion, resulting in the premature failure of structures. Ti/2 vol% hBN coatings were deposited using atmospheric (APS) and vacuum plasma spray (VPS) using cryo-milled powder feedstock to protect the structural components. The erosion performance of coatings at extreme lunar temperature regimes (−150 to 150 °C) was evaluated in a custom-made planetary erosion test rig (PETR) at low (50 mph) and high impact velocities (250 mph). The mass loss of VPS coatings was reduced by 50 % compared to the APS coatings and 40 % compared to the Ti6Al4V substrate. The cryogenic temperature induces brittleness in the material, rendering it susceptible to extreme conditions of material loss. The particle impact-deformation behavior was captured using a high-speed camera to study the erosion mechanism. This analysis revealed chipping in substrates and brittle APS coatings, while particles rebounding and embedding were observed in VPS coatings. Energy calculations, aided by particle trajectory tracking from the high-speed camera, have conclusively shown that VPS coatings absorb 5–10 % more energy than APS coatings during erosion tests. A modified erosion index was developed incorporating the fracture toughness and temperatures. New erosion models for brittle and ductile target materials are proposed for developing erosion-resistant material systems.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110339"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erosion behavior of Ti-hBN multifunctional coatings in a custom-made planetary test rig at extreme lunar temperatures\",\"authors\":\"Abhijith Kunneparambil Sukumaran , Sara Rengifo , Brandon Aguiar , Sohail M.A.K. Mohammed , William Scott , Michael Renfro , Sang-Hyon Chu , Cheol Park , Arvind Agarwal\",\"doi\":\"10.1016/j.triboint.2024.110339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spacecraft landings and takeoffs on the lunar surface, along with extreme temperature variations between day and night (−196 to 150º C), cause high-velocity dust impacts and erosion, resulting in the premature failure of structures. Ti/2 vol% hBN coatings were deposited using atmospheric (APS) and vacuum plasma spray (VPS) using cryo-milled powder feedstock to protect the structural components. The erosion performance of coatings at extreme lunar temperature regimes (−150 to 150 °C) was evaluated in a custom-made planetary erosion test rig (PETR) at low (50 mph) and high impact velocities (250 mph). The mass loss of VPS coatings was reduced by 50 % compared to the APS coatings and 40 % compared to the Ti6Al4V substrate. The cryogenic temperature induces brittleness in the material, rendering it susceptible to extreme conditions of material loss. The particle impact-deformation behavior was captured using a high-speed camera to study the erosion mechanism. This analysis revealed chipping in substrates and brittle APS coatings, while particles rebounding and embedding were observed in VPS coatings. Energy calculations, aided by particle trajectory tracking from the high-speed camera, have conclusively shown that VPS coatings absorb 5–10 % more energy than APS coatings during erosion tests. A modified erosion index was developed incorporating the fracture toughness and temperatures. New erosion models for brittle and ductile target materials are proposed for developing erosion-resistant material systems.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"202 \",\"pages\":\"Article 110339\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24010910\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010910","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Erosion behavior of Ti-hBN multifunctional coatings in a custom-made planetary test rig at extreme lunar temperatures
Spacecraft landings and takeoffs on the lunar surface, along with extreme temperature variations between day and night (−196 to 150º C), cause high-velocity dust impacts and erosion, resulting in the premature failure of structures. Ti/2 vol% hBN coatings were deposited using atmospheric (APS) and vacuum plasma spray (VPS) using cryo-milled powder feedstock to protect the structural components. The erosion performance of coatings at extreme lunar temperature regimes (−150 to 150 °C) was evaluated in a custom-made planetary erosion test rig (PETR) at low (50 mph) and high impact velocities (250 mph). The mass loss of VPS coatings was reduced by 50 % compared to the APS coatings and 40 % compared to the Ti6Al4V substrate. The cryogenic temperature induces brittleness in the material, rendering it susceptible to extreme conditions of material loss. The particle impact-deformation behavior was captured using a high-speed camera to study the erosion mechanism. This analysis revealed chipping in substrates and brittle APS coatings, while particles rebounding and embedding were observed in VPS coatings. Energy calculations, aided by particle trajectory tracking from the high-speed camera, have conclusively shown that VPS coatings absorb 5–10 % more energy than APS coatings during erosion tests. A modified erosion index was developed incorporating the fracture toughness and temperatures. New erosion models for brittle and ductile target materials are proposed for developing erosion-resistant material systems.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.