Yue Tong , Ruoyu Dang , Yongmei Yin , Changjun Men , Rimo Xi
{"title":"基于全基因组测序的检测方法,用于研究幽门螺旋杆菌的抗生素敏感性和菌株谱系","authors":"Yue Tong , Ruoyu Dang , Yongmei Yin , Changjun Men , Rimo Xi","doi":"10.1016/j.micpath.2024.107069","DOIUrl":null,"url":null,"abstract":"<div><div><em>Helicobacter pylori</em> (<em>H. pylori</em>) antibiotic resistance has been widespread and increasing worldwide, which presented a significant challenge to the successful eradication of <em>H. pylori</em> infection. Identification of antibiotic resistance and exploration of potential resistance mechanisms are thus necessary for effective treatment. For this purpose, we herein develop a whole genome sequencing (WGS) assay based on next-generation sequencing (NGS) to detect the entire genome of 73 <em>H. pylori</em> strains isolated from gastric mucosa of patients in Tianjin, China, and analyzed the association between single-nucleotide polymorphism (SNP) in resistance-related genes and phenotypic sensitivity. We discovered the consistent relationship between genotypic and phenotypic resistance by A2143 C/G in <em>23S rRNA</em> for clarithromycin (Kappa: 0.882), N87 K/I in <em>gyrA</em> for levofloxacin (Kappa: 0.883), and wild-type of <em>pbp1</em> for amoxicillin. In addition, we obtained 4 super-resistant clinical strains of <em>H. pylori</em>, which formed thick, sticky biofilms, were extremely resistant to all antibiotics regardless of the present of mutations in antibiotic targets sites. Therefore, biofilm formation is also a mechanism of drug resistance, and biofilm-related proteins or genes are also expected to be used as screening markers for H. pylori resistance.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"197 ","pages":"Article 107069"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A whole genome sequencing-based assay to investigate antibiotic susceptibility and strain lineage of Helicobacter pylori\",\"authors\":\"Yue Tong , Ruoyu Dang , Yongmei Yin , Changjun Men , Rimo Xi\",\"doi\":\"10.1016/j.micpath.2024.107069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Helicobacter pylori</em> (<em>H. pylori</em>) antibiotic resistance has been widespread and increasing worldwide, which presented a significant challenge to the successful eradication of <em>H. pylori</em> infection. Identification of antibiotic resistance and exploration of potential resistance mechanisms are thus necessary for effective treatment. For this purpose, we herein develop a whole genome sequencing (WGS) assay based on next-generation sequencing (NGS) to detect the entire genome of 73 <em>H. pylori</em> strains isolated from gastric mucosa of patients in Tianjin, China, and analyzed the association between single-nucleotide polymorphism (SNP) in resistance-related genes and phenotypic sensitivity. We discovered the consistent relationship between genotypic and phenotypic resistance by A2143 C/G in <em>23S rRNA</em> for clarithromycin (Kappa: 0.882), N87 K/I in <em>gyrA</em> for levofloxacin (Kappa: 0.883), and wild-type of <em>pbp1</em> for amoxicillin. In addition, we obtained 4 super-resistant clinical strains of <em>H. pylori</em>, which formed thick, sticky biofilms, were extremely resistant to all antibiotics regardless of the present of mutations in antibiotic targets sites. Therefore, biofilm formation is also a mechanism of drug resistance, and biofilm-related proteins or genes are also expected to be used as screening markers for H. pylori resistance.</div></div>\",\"PeriodicalId\":18599,\"journal\":{\"name\":\"Microbial pathogenesis\",\"volume\":\"197 \",\"pages\":\"Article 107069\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial pathogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0882401024005369\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401024005369","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A whole genome sequencing-based assay to investigate antibiotic susceptibility and strain lineage of Helicobacter pylori
Helicobacter pylori (H. pylori) antibiotic resistance has been widespread and increasing worldwide, which presented a significant challenge to the successful eradication of H. pylori infection. Identification of antibiotic resistance and exploration of potential resistance mechanisms are thus necessary for effective treatment. For this purpose, we herein develop a whole genome sequencing (WGS) assay based on next-generation sequencing (NGS) to detect the entire genome of 73 H. pylori strains isolated from gastric mucosa of patients in Tianjin, China, and analyzed the association between single-nucleotide polymorphism (SNP) in resistance-related genes and phenotypic sensitivity. We discovered the consistent relationship between genotypic and phenotypic resistance by A2143 C/G in 23S rRNA for clarithromycin (Kappa: 0.882), N87 K/I in gyrA for levofloxacin (Kappa: 0.883), and wild-type of pbp1 for amoxicillin. In addition, we obtained 4 super-resistant clinical strains of H. pylori, which formed thick, sticky biofilms, were extremely resistant to all antibiotics regardless of the present of mutations in antibiotic targets sites. Therefore, biofilm formation is also a mechanism of drug resistance, and biofilm-related proteins or genes are also expected to be used as screening markers for H. pylori resistance.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)