了解纳米和微粒有机 PCM 光充电过程中的光热和熔化机制

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Domala Sai Suhas, Vikrant Khullar
{"title":"了解纳米和微粒有机 PCM 光充电过程中的光热和熔化机制","authors":"Domala Sai Suhas,&nbsp;Vikrant Khullar","doi":"10.1016/j.ijthermalsci.2024.109493","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering efficient optical charging process necessitates efficient photo-thermal energy conversion, transfer, as well as storage of the incident solar radiant energy. The present work is a determining step in deciphering, quantifying, and understanding the aforementioned steps involved in the optical charging of PCMs. Herein, the effect of particle size, concentration and thermochromism have been critically investigated. In particular, detailed optical characterization and photo-thermal experimentation pertinent to non-thermochromic nanoparticles laden PCM (referred to as NP-PCM) and thermochromic micro capsules laden PCM (referred to as TMCP-PCM) has been undertaken. Detailed optical analysis points out that opposed to NP-PCM, TMCP-PCM significantly scatter the incident radiations – the diffuse transmittance (at room temperature) in the two cases being approximately 2 % and 39 % respectively. Furthermore, whereas, optical properties of non-thermochromic nanoparticles are nearly invariant to temperature changes; in the case of thermochromic microcapsules, the magnitude of scattering further increases and diffuse transmittance reaches as high as 51 % at elevated temperatures. Although, thermochromism helps in enhancing the penetration depth at elevated temperatures, but, due to significant fraction of scattering, the photo-thermal energy conversion is not that effective. In terms of temperature field, spatial-temporal temperature distribution curves reveal that temperature spread (in the liquid phase) in case of optical charging of non-thermochromic particles (carbon soot nanoparticles) laden PCMs is significantly high (as high as approximately 24 °C) relative to that observed in case of thermochromic particles (microcapsules) laden PCMs (approximately, 4 °C). The magnitude of the temperature spread (being representative of the deviation from thermostatic optical charging) clearly points out that opposed to non-thermochromic laden PCMs, nearly thermostatic optical charging can be achieved in case of thermochromic particles laden PCMs.</div><div>Furthermore, in case of optical charging without thermochromic assistance, the temperature spread, peak temperatures and the melting rates increase with increase in particles concentration. Whereas, in the latter case, although the temperature spread and peak temperatures are nearly independent; the melting rates do depend on the particles’ concentration. Overall, the present work is a significant step towards accelerated-thermostatic thermal energy storage.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109493"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding photo-thermal and melting mechanisms in optical charging of nano and micro particles laden organic PCMs\",\"authors\":\"Domala Sai Suhas,&nbsp;Vikrant Khullar\",\"doi\":\"10.1016/j.ijthermalsci.2024.109493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Engineering efficient optical charging process necessitates efficient photo-thermal energy conversion, transfer, as well as storage of the incident solar radiant energy. The present work is a determining step in deciphering, quantifying, and understanding the aforementioned steps involved in the optical charging of PCMs. Herein, the effect of particle size, concentration and thermochromism have been critically investigated. In particular, detailed optical characterization and photo-thermal experimentation pertinent to non-thermochromic nanoparticles laden PCM (referred to as NP-PCM) and thermochromic micro capsules laden PCM (referred to as TMCP-PCM) has been undertaken. Detailed optical analysis points out that opposed to NP-PCM, TMCP-PCM significantly scatter the incident radiations – the diffuse transmittance (at room temperature) in the two cases being approximately 2 % and 39 % respectively. Furthermore, whereas, optical properties of non-thermochromic nanoparticles are nearly invariant to temperature changes; in the case of thermochromic microcapsules, the magnitude of scattering further increases and diffuse transmittance reaches as high as 51 % at elevated temperatures. Although, thermochromism helps in enhancing the penetration depth at elevated temperatures, but, due to significant fraction of scattering, the photo-thermal energy conversion is not that effective. In terms of temperature field, spatial-temporal temperature distribution curves reveal that temperature spread (in the liquid phase) in case of optical charging of non-thermochromic particles (carbon soot nanoparticles) laden PCMs is significantly high (as high as approximately 24 °C) relative to that observed in case of thermochromic particles (microcapsules) laden PCMs (approximately, 4 °C). The magnitude of the temperature spread (being representative of the deviation from thermostatic optical charging) clearly points out that opposed to non-thermochromic laden PCMs, nearly thermostatic optical charging can be achieved in case of thermochromic particles laden PCMs.</div><div>Furthermore, in case of optical charging without thermochromic assistance, the temperature spread, peak temperatures and the melting rates increase with increase in particles concentration. Whereas, in the latter case, although the temperature spread and peak temperatures are nearly independent; the melting rates do depend on the particles’ concentration. Overall, the present work is a significant step towards accelerated-thermostatic thermal energy storage.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"208 \",\"pages\":\"Article 109493\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129007292400615X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129007292400615X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

要实现高效的光学充电过程,就必须对入射的太阳辐射能量进行高效的光热能量转换、传输和存储。本研究是破译、量化和理解 PCM 光学充电过程中上述步骤的决定性一步。在此,我们对颗粒大小、浓度和热致变色的影响进行了严格研究。特别是对非热致变色纳米颗粒负载 PCM(简称 NP-PCM)和热致变色微胶囊负载 PCM(简称 TMCP-PCM)进行了详细的光学表征和光热实验。详细的光学分析表明,与 NP-PCM 相反,TMCP-PCM 会明显散射入射辐射--两种情况下的漫射透过率(室温下)分别约为 2 % 和 39 %。此外,非热致变色纳米粒子的光学特性几乎不受温度变化的影响;而在热致变色微胶囊中,散射的幅度进一步增大,在高温下的漫射透过率高达 51%。虽然热致变色有助于提高高温下的穿透深度,但由于散射量很大,光热能量转换的效果并不理想。就温度场而言,空间-时间温度分布曲线显示,与载热致变色粒子(微胶囊)的情况(约 4 °C)相比,非热致变色粒子(碳烟纳米粒子)载 PCM 光充电情况下(液相)的温度分布明显较高(高达约 24 °C)。温度差的大小(代表偏离恒温光学充电的程度)清楚地表明,与不含热致变色粒子的 PCM 相比,含热致变色粒子的 PCM 几乎可以实现恒温光学充电。而在后一种情况下,虽然温度分布和峰值温度几乎无关,但熔化率确实取决于颗粒浓度。总之,本研究是向加速恒温热能储存迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding photo-thermal and melting mechanisms in optical charging of nano and micro particles laden organic PCMs
Engineering efficient optical charging process necessitates efficient photo-thermal energy conversion, transfer, as well as storage of the incident solar radiant energy. The present work is a determining step in deciphering, quantifying, and understanding the aforementioned steps involved in the optical charging of PCMs. Herein, the effect of particle size, concentration and thermochromism have been critically investigated. In particular, detailed optical characterization and photo-thermal experimentation pertinent to non-thermochromic nanoparticles laden PCM (referred to as NP-PCM) and thermochromic micro capsules laden PCM (referred to as TMCP-PCM) has been undertaken. Detailed optical analysis points out that opposed to NP-PCM, TMCP-PCM significantly scatter the incident radiations – the diffuse transmittance (at room temperature) in the two cases being approximately 2 % and 39 % respectively. Furthermore, whereas, optical properties of non-thermochromic nanoparticles are nearly invariant to temperature changes; in the case of thermochromic microcapsules, the magnitude of scattering further increases and diffuse transmittance reaches as high as 51 % at elevated temperatures. Although, thermochromism helps in enhancing the penetration depth at elevated temperatures, but, due to significant fraction of scattering, the photo-thermal energy conversion is not that effective. In terms of temperature field, spatial-temporal temperature distribution curves reveal that temperature spread (in the liquid phase) in case of optical charging of non-thermochromic particles (carbon soot nanoparticles) laden PCMs is significantly high (as high as approximately 24 °C) relative to that observed in case of thermochromic particles (microcapsules) laden PCMs (approximately, 4 °C). The magnitude of the temperature spread (being representative of the deviation from thermostatic optical charging) clearly points out that opposed to non-thermochromic laden PCMs, nearly thermostatic optical charging can be achieved in case of thermochromic particles laden PCMs.
Furthermore, in case of optical charging without thermochromic assistance, the temperature spread, peak temperatures and the melting rates increase with increase in particles concentration. Whereas, in the latter case, although the temperature spread and peak temperatures are nearly independent; the melting rates do depend on the particles’ concentration. Overall, the present work is a significant step towards accelerated-thermostatic thermal energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信