中国黄土高原丘陵沟壑区未铺设路面公路的年水土流失特征

IF 5.4 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
{"title":"中国黄土高原丘陵沟壑区未铺设路面公路的年水土流失特征","authors":"","doi":"10.1016/j.catena.2024.108483","DOIUrl":null,"url":null,"abstract":"<div><div>The problem of unpaved road erosion is prominent in the Loess Plateau hilly and gully region. Unpaved roads contribute substantially to watershed sediment due to their high soil bulk density, low infiltration rates and extensive network. In this study, a field investigation was conducted on typical unpaved roads within a typical watershed in this region, focusing on assessing the damage state, annual soil loss and the factors influencing erosion in a comparatively wet year. The results showed that the soil erosion from unpaved roads was very severe, with an annual erosion intensity of 470 t hm<sup>−2</sup>, following three heavy rain events and two rainstorm events in the summer of 2022. The main unpaved roads (MUR) suffered the most severe road erosion, with 22.2 % of road segments experiencing severe erosion with classical gullies. The erosion gullies on the road had an average depth of 16.1 cm and an average width of 36.5 cm, with the widest being 146.0 cm and the deepest being 174.0 cm. The road erosion intensity was significantly related to drainage area, road area, road length and coverage. Road erosion reduced significantly when the land use in the drainage areas of the road was covered with shrub or grass, or road surface was covered with grass or gravel. Our findings offer valuable insights for road construction and erosion prevention in similar terrains.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annual soil erosion characteristics of unpaved roads in the Loess Plateau hilly and gully region, China\",\"authors\":\"\",\"doi\":\"10.1016/j.catena.2024.108483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The problem of unpaved road erosion is prominent in the Loess Plateau hilly and gully region. Unpaved roads contribute substantially to watershed sediment due to their high soil bulk density, low infiltration rates and extensive network. In this study, a field investigation was conducted on typical unpaved roads within a typical watershed in this region, focusing on assessing the damage state, annual soil loss and the factors influencing erosion in a comparatively wet year. The results showed that the soil erosion from unpaved roads was very severe, with an annual erosion intensity of 470 t hm<sup>−2</sup>, following three heavy rain events and two rainstorm events in the summer of 2022. The main unpaved roads (MUR) suffered the most severe road erosion, with 22.2 % of road segments experiencing severe erosion with classical gullies. The erosion gullies on the road had an average depth of 16.1 cm and an average width of 36.5 cm, with the widest being 146.0 cm and the deepest being 174.0 cm. The road erosion intensity was significantly related to drainage area, road area, road length and coverage. Road erosion reduced significantly when the land use in the drainage areas of the road was covered with shrub or grass, or road surface was covered with grass or gravel. Our findings offer valuable insights for road construction and erosion prevention in similar terrains.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816224006805\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224006805","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在黄土高原丘陵沟壑区,未铺设路面的道路侵蚀问题十分突出。未铺设路面的道路因其土壤容重高、渗透率低、路网广等特点,对流域泥沙造成了极大的影响。本研究对该地区典型流域内的典型未铺设路面的道路进行了实地调查,重点评估了在相对潮湿年份的破坏状况、年土壤流失量以及影响水土流失的因素。结果表明,在 2022 年夏季的三次大雨和两次暴雨之后,未铺设路面的土壤侵蚀非常严重,年侵蚀强度为 470 t hm-2。未铺设路面的主干道(MUR)遭受的路面侵蚀最为严重,22.2%的路段出现了严重的侵蚀,并伴有典型的冲沟。道路上的侵蚀沟平均深度为 16.1 厘米,平均宽度为 36.5 厘米,最宽处为 146.0 厘米,最深处为 174.0 厘米。道路侵蚀强度与排水面积、道路面积、道路长度和覆盖率有明显关系。当道路排水区的土地使用被灌木或草覆盖,或路面被草或砾石覆盖时,道路侵蚀强度明显降低。我们的研究结果为类似地形的道路建设和水土流失预防提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annual soil erosion characteristics of unpaved roads in the Loess Plateau hilly and gully region, China
The problem of unpaved road erosion is prominent in the Loess Plateau hilly and gully region. Unpaved roads contribute substantially to watershed sediment due to their high soil bulk density, low infiltration rates and extensive network. In this study, a field investigation was conducted on typical unpaved roads within a typical watershed in this region, focusing on assessing the damage state, annual soil loss and the factors influencing erosion in a comparatively wet year. The results showed that the soil erosion from unpaved roads was very severe, with an annual erosion intensity of 470 t hm−2, following three heavy rain events and two rainstorm events in the summer of 2022. The main unpaved roads (MUR) suffered the most severe road erosion, with 22.2 % of road segments experiencing severe erosion with classical gullies. The erosion gullies on the road had an average depth of 16.1 cm and an average width of 36.5 cm, with the widest being 146.0 cm and the deepest being 174.0 cm. The road erosion intensity was significantly related to drainage area, road area, road length and coverage. Road erosion reduced significantly when the land use in the drainage areas of the road was covered with shrub or grass, or road surface was covered with grass or gravel. Our findings offer valuable insights for road construction and erosion prevention in similar terrains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信