{"title":"快速测定脂肪含量:适用于各种鱼类的先进光谱方法","authors":"Angeliki Doukaki , Lemonia-Christina Fengou , Anastasia Lytou , Maria-Konstantina Spyratou , Alexandra Nanou , Evangelia Krystalli , Katerina Pissaridi , George-John Nychas","doi":"10.1016/j.foodcont.2024.110948","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid estimation of fat content using spectroscopic-based sensors, irrespective of fish species (salmon, trout, sea bass, sea bream, tuna, cod, and mackerel), was primarily investigated in the present study. The fat content and fatty acid (FA) composition was quantified with reference methods. Fourier-Transform Infrared (FTIR) and Fourier-Transform Near-Infrared (FT-NIR) spectroscopy, along with multispectral imaging (MSI) instruments (both benchtop and portable), were evaluated for their ability to rapidly predict fat content in ground samples using data analysis. The performance of the PLS-R models was evaluated according to root mean square error (RMSE), coefficient of determination (R<sup>2</sup>) and residual prediction deviation (RPD). Also fish were classified as fat/low-fat and low/medium/high-fat using partial least squares discriminant analysis (PLS-DA). All fish species exhibited a consistent pattern of unsaturated fatty acids (UNFA) > monounsaturated fatty acids (MUFA) > polyunsaturated fatty acids (PUFA) > saturated fatty acids (SFA) and the range of fat content was from 22.8 (salmon) to 0.02 (cod), expressed in g/100 g of sample based on the reference methods. In terms of fat content prediction using rapid sensors the best performance indices of the test set were obtained from the benchtop-MSI (RMSE = 1.475, R<sup>2</sup> = 0.847, RPD = 2.581) and FT-NIR (RMSE = 1.638, R<sup>2</sup> = 0.855, RPD = 2.651) instruments, while FTIR and portable-MSI had scores of RMSE = 1.874, R<sup>2</sup> = 0.815, RPD = 2.309 and RMSE = 1.737, R<sup>2</sup> = 0.786, RPD = 2.191, respectively. All sensors discriminated fat from low-fat samples (accuracy = 100%). For low/medium/high fat the best results were achieved by benchtop-MSI (accuracy = 94.12%), followed by portable-MSI (accuracy = 88.24%) and FTIR (accuracy = 84.21%). Results were less satisfactory for the FT-NIR method (accuracy = 68.75%). This study demonstrates that vibrational and multispectral imaging spectroscopies, when coupled with data analysis, have potential to provide information about the nutritional quality (e.g., fat content) independent of the fish species. Such insights could contribute to the automation and potential digitalization of processes within the fields of food nutrition and the seafood industry.</div></div>","PeriodicalId":319,"journal":{"name":"Food Control","volume":"168 ","pages":"Article 110948"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid determination of fat content: Advanced spectroscopic methods across diverse fish species\",\"authors\":\"Angeliki Doukaki , Lemonia-Christina Fengou , Anastasia Lytou , Maria-Konstantina Spyratou , Alexandra Nanou , Evangelia Krystalli , Katerina Pissaridi , George-John Nychas\",\"doi\":\"10.1016/j.foodcont.2024.110948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid estimation of fat content using spectroscopic-based sensors, irrespective of fish species (salmon, trout, sea bass, sea bream, tuna, cod, and mackerel), was primarily investigated in the present study. The fat content and fatty acid (FA) composition was quantified with reference methods. Fourier-Transform Infrared (FTIR) and Fourier-Transform Near-Infrared (FT-NIR) spectroscopy, along with multispectral imaging (MSI) instruments (both benchtop and portable), were evaluated for their ability to rapidly predict fat content in ground samples using data analysis. The performance of the PLS-R models was evaluated according to root mean square error (RMSE), coefficient of determination (R<sup>2</sup>) and residual prediction deviation (RPD). Also fish were classified as fat/low-fat and low/medium/high-fat using partial least squares discriminant analysis (PLS-DA). All fish species exhibited a consistent pattern of unsaturated fatty acids (UNFA) > monounsaturated fatty acids (MUFA) > polyunsaturated fatty acids (PUFA) > saturated fatty acids (SFA) and the range of fat content was from 22.8 (salmon) to 0.02 (cod), expressed in g/100 g of sample based on the reference methods. In terms of fat content prediction using rapid sensors the best performance indices of the test set were obtained from the benchtop-MSI (RMSE = 1.475, R<sup>2</sup> = 0.847, RPD = 2.581) and FT-NIR (RMSE = 1.638, R<sup>2</sup> = 0.855, RPD = 2.651) instruments, while FTIR and portable-MSI had scores of RMSE = 1.874, R<sup>2</sup> = 0.815, RPD = 2.309 and RMSE = 1.737, R<sup>2</sup> = 0.786, RPD = 2.191, respectively. All sensors discriminated fat from low-fat samples (accuracy = 100%). For low/medium/high fat the best results were achieved by benchtop-MSI (accuracy = 94.12%), followed by portable-MSI (accuracy = 88.24%) and FTIR (accuracy = 84.21%). Results were less satisfactory for the FT-NIR method (accuracy = 68.75%). This study demonstrates that vibrational and multispectral imaging spectroscopies, when coupled with data analysis, have potential to provide information about the nutritional quality (e.g., fat content) independent of the fish species. Such insights could contribute to the automation and potential digitalization of processes within the fields of food nutrition and the seafood industry.</div></div>\",\"PeriodicalId\":319,\"journal\":{\"name\":\"Food Control\",\"volume\":\"168 \",\"pages\":\"Article 110948\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Control\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956713524006650\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Control","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956713524006650","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Rapid determination of fat content: Advanced spectroscopic methods across diverse fish species
The rapid estimation of fat content using spectroscopic-based sensors, irrespective of fish species (salmon, trout, sea bass, sea bream, tuna, cod, and mackerel), was primarily investigated in the present study. The fat content and fatty acid (FA) composition was quantified with reference methods. Fourier-Transform Infrared (FTIR) and Fourier-Transform Near-Infrared (FT-NIR) spectroscopy, along with multispectral imaging (MSI) instruments (both benchtop and portable), were evaluated for their ability to rapidly predict fat content in ground samples using data analysis. The performance of the PLS-R models was evaluated according to root mean square error (RMSE), coefficient of determination (R2) and residual prediction deviation (RPD). Also fish were classified as fat/low-fat and low/medium/high-fat using partial least squares discriminant analysis (PLS-DA). All fish species exhibited a consistent pattern of unsaturated fatty acids (UNFA) > monounsaturated fatty acids (MUFA) > polyunsaturated fatty acids (PUFA) > saturated fatty acids (SFA) and the range of fat content was from 22.8 (salmon) to 0.02 (cod), expressed in g/100 g of sample based on the reference methods. In terms of fat content prediction using rapid sensors the best performance indices of the test set were obtained from the benchtop-MSI (RMSE = 1.475, R2 = 0.847, RPD = 2.581) and FT-NIR (RMSE = 1.638, R2 = 0.855, RPD = 2.651) instruments, while FTIR and portable-MSI had scores of RMSE = 1.874, R2 = 0.815, RPD = 2.309 and RMSE = 1.737, R2 = 0.786, RPD = 2.191, respectively. All sensors discriminated fat from low-fat samples (accuracy = 100%). For low/medium/high fat the best results were achieved by benchtop-MSI (accuracy = 94.12%), followed by portable-MSI (accuracy = 88.24%) and FTIR (accuracy = 84.21%). Results were less satisfactory for the FT-NIR method (accuracy = 68.75%). This study demonstrates that vibrational and multispectral imaging spectroscopies, when coupled with data analysis, have potential to provide information about the nutritional quality (e.g., fat content) independent of the fish species. Such insights could contribute to the automation and potential digitalization of processes within the fields of food nutrition and the seafood industry.
期刊介绍:
Food Control is an international journal that provides essential information for those involved in food safety and process control.
Food Control covers the below areas that relate to food process control or to food safety of human foods:
• Microbial food safety and antimicrobial systems
• Mycotoxins
• Hazard analysis, HACCP and food safety objectives
• Risk assessment, including microbial and chemical hazards
• Quality assurance
• Good manufacturing practices
• Food process systems design and control
• Food Packaging technology and materials in contact with foods
• Rapid methods of analysis and detection, including sensor technology
• Codes of practice, legislation and international harmonization
• Consumer issues
• Education, training and research needs.
The scope of Food Control is comprehensive and includes original research papers, authoritative reviews, short communications, comment articles that report on new developments in food control, and position papers.