深度学习辅助、基于智能手机的通用型 Multi-RPA-CRISPR/Cas12a-G4 便携式芯片,用于同时检测 CaMV35S 和 NOS

IF 5.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Xuheng Li , Meilin Liu , Xuhui Xia , Xin Zeng , Dianhui Men , Yi Duan , Jingzhou Hou , Changjun Hou , Danqun Huo
{"title":"深度学习辅助、基于智能手机的通用型 Multi-RPA-CRISPR/Cas12a-G4 便携式芯片,用于同时检测 CaMV35S 和 NOS","authors":"Xuheng Li ,&nbsp;Meilin Liu ,&nbsp;Xuhui Xia ,&nbsp;Xin Zeng ,&nbsp;Dianhui Men ,&nbsp;Yi Duan ,&nbsp;Jingzhou Hou ,&nbsp;Changjun Hou ,&nbsp;Danqun Huo","doi":"10.1016/j.foodcont.2024.110947","DOIUrl":null,"url":null,"abstract":"<div><div>Portable and fast genetically modified organisms (GMOs) detection can achieve accurate labeling and precise regulation. Here, we build a universal and intelligent Multi-RPA-CRISPR/Cas12a-G4 detection chip platform for simultaneous CaMV35S and NOS detection. The use of multiple primer pairs for RPA enables one-tube amplification of dual targets. Independent cleavage of Cas12a for dual targets was controlled by flow amplification products into the respective detection chambers containing CaMV35S crRNA and NOS crRNA. The detection results are obtained based that uncut G4 in solution can produce peroxidase activity to catalyze ABTS<sup>2−</sup> making the negative result approaching dark green. The multi-RPA-CRISRP/Cas12a-G4 colorimetric platform achieves a 1 aM LOD for CaMV35S and NOS in 55 min. The Yolov5 deep learning algorithm and the analysis of gray values was trained and developed for colorimetric detection that is more sensitive than the naked eye. These algorithms are integrated into a smartphone app to automate the reading of test results. The 100% accuracy of colorimetry detection and the 93.3% accuracy of portable chip detection for rice and soy sauce samples demonstrate our method can rapidly and inexpensively detect samples of GMOs across species. Overall, our efficient, low-cost portable Multi-RPA-CRISPR/Cas12a-G4 detection platform coupled with deep learning algorithms enables portable GMOs detection with automated signal readout.</div></div>","PeriodicalId":319,"journal":{"name":"Food Control","volume":"168 ","pages":"Article 110947"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning assisted, smartphone based universal Multi-RPA-CRISPR/Cas12a-G4 portable chip for simultaneous detection of CaMV35S and NOS\",\"authors\":\"Xuheng Li ,&nbsp;Meilin Liu ,&nbsp;Xuhui Xia ,&nbsp;Xin Zeng ,&nbsp;Dianhui Men ,&nbsp;Yi Duan ,&nbsp;Jingzhou Hou ,&nbsp;Changjun Hou ,&nbsp;Danqun Huo\",\"doi\":\"10.1016/j.foodcont.2024.110947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Portable and fast genetically modified organisms (GMOs) detection can achieve accurate labeling and precise regulation. Here, we build a universal and intelligent Multi-RPA-CRISPR/Cas12a-G4 detection chip platform for simultaneous CaMV35S and NOS detection. The use of multiple primer pairs for RPA enables one-tube amplification of dual targets. Independent cleavage of Cas12a for dual targets was controlled by flow amplification products into the respective detection chambers containing CaMV35S crRNA and NOS crRNA. The detection results are obtained based that uncut G4 in solution can produce peroxidase activity to catalyze ABTS<sup>2−</sup> making the negative result approaching dark green. The multi-RPA-CRISRP/Cas12a-G4 colorimetric platform achieves a 1 aM LOD for CaMV35S and NOS in 55 min. The Yolov5 deep learning algorithm and the analysis of gray values was trained and developed for colorimetric detection that is more sensitive than the naked eye. These algorithms are integrated into a smartphone app to automate the reading of test results. The 100% accuracy of colorimetry detection and the 93.3% accuracy of portable chip detection for rice and soy sauce samples demonstrate our method can rapidly and inexpensively detect samples of GMOs across species. Overall, our efficient, low-cost portable Multi-RPA-CRISPR/Cas12a-G4 detection platform coupled with deep learning algorithms enables portable GMOs detection with automated signal readout.</div></div>\",\"PeriodicalId\":319,\"journal\":{\"name\":\"Food Control\",\"volume\":\"168 \",\"pages\":\"Article 110947\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Control\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956713524006649\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Control","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956713524006649","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

便携、快速的转基因生物(GMOs)检测可以实现准确标记和精确监管。在此,我们构建了一个通用、智能的多RPA-CRISPR/Cas12a-G4检测芯片平台,用于同时检测CaMV35S和NOS。使用多引物对 RPA 可实现双目标的一管扩增。通过将扩增产物分别流入含有 CaMV35S crRNA 和 NOS crRNA 的检测室,控制了 Cas12a 对双目标的独立裂解。检测结果是基于溶液中未切割的 G4 能产生过氧化物酶活性来催化 ABTS2,从而使阴性结果接近深绿色。多重 RPA-CRISRP/Cas12a-G4 比色平台可在 55 分钟内实现对 CaMV35S 和 NOS 的 1 aM LOD 检测。Yolov5 深度学习算法和灰度值分析经过训练和开发,用于比肉眼更灵敏的比色检测。这些算法集成到智能手机应用程序中,可自动读取检测结果。对于大米和酱油样品,比色法检测的准确率为 100%,便携式芯片检测的准确率为 93.3%,这表明我们的方法可以快速、低成本地检测不同物种的转基因生物样品。总之,我们高效、低成本的便携式 Multi-RPA-CRISPR/Cas12a-G4 检测平台与深度学习算法相结合,实现了便携式转基因生物检测与信号自动读取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning assisted, smartphone based universal Multi-RPA-CRISPR/Cas12a-G4 portable chip for simultaneous detection of CaMV35S and NOS
Portable and fast genetically modified organisms (GMOs) detection can achieve accurate labeling and precise regulation. Here, we build a universal and intelligent Multi-RPA-CRISPR/Cas12a-G4 detection chip platform for simultaneous CaMV35S and NOS detection. The use of multiple primer pairs for RPA enables one-tube amplification of dual targets. Independent cleavage of Cas12a for dual targets was controlled by flow amplification products into the respective detection chambers containing CaMV35S crRNA and NOS crRNA. The detection results are obtained based that uncut G4 in solution can produce peroxidase activity to catalyze ABTS2− making the negative result approaching dark green. The multi-RPA-CRISRP/Cas12a-G4 colorimetric platform achieves a 1 aM LOD for CaMV35S and NOS in 55 min. The Yolov5 deep learning algorithm and the analysis of gray values was trained and developed for colorimetric detection that is more sensitive than the naked eye. These algorithms are integrated into a smartphone app to automate the reading of test results. The 100% accuracy of colorimetry detection and the 93.3% accuracy of portable chip detection for rice and soy sauce samples demonstrate our method can rapidly and inexpensively detect samples of GMOs across species. Overall, our efficient, low-cost portable Multi-RPA-CRISPR/Cas12a-G4 detection platform coupled with deep learning algorithms enables portable GMOs detection with automated signal readout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Control
Food Control 工程技术-食品科技
CiteScore
12.20
自引率
6.70%
发文量
758
审稿时长
33 days
期刊介绍: Food Control is an international journal that provides essential information for those involved in food safety and process control. Food Control covers the below areas that relate to food process control or to food safety of human foods: • Microbial food safety and antimicrobial systems • Mycotoxins • Hazard analysis, HACCP and food safety objectives • Risk assessment, including microbial and chemical hazards • Quality assurance • Good manufacturing practices • Food process systems design and control • Food Packaging technology and materials in contact with foods • Rapid methods of analysis and detection, including sensor technology • Codes of practice, legislation and international harmonization • Consumer issues • Education, training and research needs. The scope of Food Control is comprehensive and includes original research papers, authoritative reviews, short communications, comment articles that report on new developments in food control, and position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信