用于无阳极锂金属电池的混合富锂正极

Chunxi Tian , Kun Qin , Tingting Xu , Liumin Suo
{"title":"用于无阳极锂金属电池的混合富锂正极","authors":"Chunxi Tian ,&nbsp;Kun Qin ,&nbsp;Tingting Xu ,&nbsp;Liumin Suo","doi":"10.1016/j.nxnano.2024.100114","DOIUrl":null,"url":null,"abstract":"<div><div>Anode-free lithium metal batteries (AFLMBs) are expected to achieve high energy density without Li anode. However, their capacities are fading quickly due to the lack of excessive Li resources from the anode side (N/P=0). Previously, cathode pre-lithiation to supplement excess Li in NCM811 was proven feasible to extend the battery lifespan of AFLMB, but deep lithiation suffers from crystal structure damage, resulting in short cycle life. Here, we proposed a hybrid Li-rich cathode by pre-lithiation of spinel structure material LiMn<sub>2</sub>O<sub>4</sub> instead of Li-rich NCM compositing with NCM811, providing a new way to extend the lifespan of AFLMBs. During the first charge process, Li<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>, as a pre-lithiation reagent, releases excess Li to form a lithium layer on the anode and revert to LiMn<sub>2</sub>O<sub>4,</sub> maintaining stable electrochemical reversibility in the following cycles. The anode-free lithium metal pouch cell employing a Li-rich hybrid cathode achieves a high energy density of nearly 400 Wh kg<sup>−1</sup> with 80 % capacity retention after 50 cycles.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Li-rich cathodes for anode-free lithium metal batteries\",\"authors\":\"Chunxi Tian ,&nbsp;Kun Qin ,&nbsp;Tingting Xu ,&nbsp;Liumin Suo\",\"doi\":\"10.1016/j.nxnano.2024.100114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anode-free lithium metal batteries (AFLMBs) are expected to achieve high energy density without Li anode. However, their capacities are fading quickly due to the lack of excessive Li resources from the anode side (N/P=0). Previously, cathode pre-lithiation to supplement excess Li in NCM811 was proven feasible to extend the battery lifespan of AFLMB, but deep lithiation suffers from crystal structure damage, resulting in short cycle life. Here, we proposed a hybrid Li-rich cathode by pre-lithiation of spinel structure material LiMn<sub>2</sub>O<sub>4</sub> instead of Li-rich NCM compositing with NCM811, providing a new way to extend the lifespan of AFLMBs. During the first charge process, Li<sub>2</sub>Mn<sub>2</sub>O<sub>4</sub>, as a pre-lithiation reagent, releases excess Li to form a lithium layer on the anode and revert to LiMn<sub>2</sub>O<sub>4,</sub> maintaining stable electrochemical reversibility in the following cycles. The anode-free lithium metal pouch cell employing a Li-rich hybrid cathode achieves a high energy density of nearly 400 Wh kg<sup>−1</sup> with 80 % capacity retention after 50 cycles.</div></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无负极锂金属电池(AFLMB)有望在没有锂负极的情况下实现高能量密度。然而,由于正极缺乏过量的锂资源(N/P=0),它们的容量正在迅速衰减。以前,通过阴极预锂化来补充 NCM811 中过剩的锂资源被证明是延长 AFLMB 电池寿命的可行方法,但深度锂化会导致晶体结构损坏,从而缩短循环寿命。在此,我们提出了一种混合富锂正极,通过尖晶石结构材料 LiMn2O4 的预锂化来替代与 NCM811 复合的富锂 NCM,为延长 AFLMB 的寿命提供了一条新途径。在第一次充电过程中,作为预锂化试剂的 Li2Mn2O4 会释放出过量的锂,在阳极上形成锂层并还原为 LiMn2O4,从而在接下来的循环中保持稳定的电化学可逆性。采用富锂混合阴极的无阳极锂金属袋电池在循环 50 次后可实现近 400 Wh kg-1 的高能量密度和 80% 的容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Li-rich cathodes for anode-free lithium metal batteries
Anode-free lithium metal batteries (AFLMBs) are expected to achieve high energy density without Li anode. However, their capacities are fading quickly due to the lack of excessive Li resources from the anode side (N/P=0). Previously, cathode pre-lithiation to supplement excess Li in NCM811 was proven feasible to extend the battery lifespan of AFLMB, but deep lithiation suffers from crystal structure damage, resulting in short cycle life. Here, we proposed a hybrid Li-rich cathode by pre-lithiation of spinel structure material LiMn2O4 instead of Li-rich NCM compositing with NCM811, providing a new way to extend the lifespan of AFLMBs. During the first charge process, Li2Mn2O4, as a pre-lithiation reagent, releases excess Li to form a lithium layer on the anode and revert to LiMn2O4, maintaining stable electrochemical reversibility in the following cycles. The anode-free lithium metal pouch cell employing a Li-rich hybrid cathode achieves a high energy density of nearly 400 Wh kg−1 with 80 % capacity retention after 50 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信