{"title":"软骨熔体凝固的数值模型","authors":"","doi":"10.1016/j.icarus.2024.116317","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a novel numerical method to simulate the growth dynamics of an olivine single crystal within an isolated, multicomponent silicate droplet. We aimed to theoretically replicate the solidification textures observed in chondrules. The method leverages the phase-field model, a well-established framework for simulating alloy solidification. This approach enables the calculation of the solidification process within the ternary MgO–FeO–SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> system. Furthermore, the model incorporates the anisotropic characteristics of interface free energy and growth kinetics inherent to the crystal structure. Here we investigated an anisotropy model capable of reproducing the experimentally observed dependence of the growth patterns of the olivine single crystal on the degree of supercooling under the constraints of two-dimensional modeling. By independently adjusting the degree of anisotropies of interface free energy and growth kinetics, we successfully achieved the qualitative replication of diverse olivine crystal morphologies, ranging from polyhedral shapes at low supercooling to elongated, needle-like structures at high supercooling. This computationally driven method offers a unique and groundbreaking approach for theoretically reproducing the solidification textures of chondrules.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical model for the solidification of a chondrule melt\",\"authors\":\"\",\"doi\":\"10.1016/j.icarus.2024.116317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we propose a novel numerical method to simulate the growth dynamics of an olivine single crystal within an isolated, multicomponent silicate droplet. We aimed to theoretically replicate the solidification textures observed in chondrules. The method leverages the phase-field model, a well-established framework for simulating alloy solidification. This approach enables the calculation of the solidification process within the ternary MgO–FeO–SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> system. Furthermore, the model incorporates the anisotropic characteristics of interface free energy and growth kinetics inherent to the crystal structure. Here we investigated an anisotropy model capable of reproducing the experimentally observed dependence of the growth patterns of the olivine single crystal on the degree of supercooling under the constraints of two-dimensional modeling. By independently adjusting the degree of anisotropies of interface free energy and growth kinetics, we successfully achieved the qualitative replication of diverse olivine crystal morphologies, ranging from polyhedral shapes at low supercooling to elongated, needle-like structures at high supercooling. This computationally driven method offers a unique and groundbreaking approach for theoretically reproducing the solidification textures of chondrules.</div></div>\",\"PeriodicalId\":13199,\"journal\":{\"name\":\"Icarus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icarus\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019103524003774\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524003774","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Numerical model for the solidification of a chondrule melt
In this study, we propose a novel numerical method to simulate the growth dynamics of an olivine single crystal within an isolated, multicomponent silicate droplet. We aimed to theoretically replicate the solidification textures observed in chondrules. The method leverages the phase-field model, a well-established framework for simulating alloy solidification. This approach enables the calculation of the solidification process within the ternary MgO–FeO–SiO system. Furthermore, the model incorporates the anisotropic characteristics of interface free energy and growth kinetics inherent to the crystal structure. Here we investigated an anisotropy model capable of reproducing the experimentally observed dependence of the growth patterns of the olivine single crystal on the degree of supercooling under the constraints of two-dimensional modeling. By independently adjusting the degree of anisotropies of interface free energy and growth kinetics, we successfully achieved the qualitative replication of diverse olivine crystal morphologies, ranging from polyhedral shapes at low supercooling to elongated, needle-like structures at high supercooling. This computationally driven method offers a unique and groundbreaking approach for theoretically reproducing the solidification textures of chondrules.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.