{"title":"城市生态复原力的演变:基于脆弱性、敏感性和自组织的评估框架","authors":"Xinghua Feng , Fansheng Zeng , Becky P.Y. Loo , Yexi Zhong","doi":"10.1016/j.scs.2024.105933","DOIUrl":null,"url":null,"abstract":"<div><div>Ecological resilience assessment has become a key link in urban sustainable governance. This study introduces a new evaluation framework to inform policy-making and practical applications. Based on the structural and functional dimensions of landscape patterns, it integrates the vulnerability, sensitivity and self-organization of resilience to point to desirable directions of ecological resilience. A composite ecological resilience index is compiled based on six indices of landscape diversity, landscape disturbance, source-sink patch distance, habitat quality, minimum cumulative resistance, and landscape restoration. The framework is particularly applicable to cities located in ecologically sensitive areas. Hence, Nanchang City, China was selected as a case study. Using 1km<sup>2</sup> hexagonal grids, the framework is applied to map spatiotemporal changes and to analyze various natural and anthropogenic driving forces of ecological resilience in Nanchang from 2000 to 2020. Research findings confirm the feasibility and value of the urban ecological resilience analysis framework. They also highlight the advantages of the framework in revealing spatially dynamic processes and ecological resilience contributing factors, making it a valuable and practical tool for sustainable urban planning and refined management decision-making.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"116 ","pages":"Article 105933"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolution of urban ecological resilience: An evaluation framework based on vulnerability, sensitivity and self-organization\",\"authors\":\"Xinghua Feng , Fansheng Zeng , Becky P.Y. Loo , Yexi Zhong\",\"doi\":\"10.1016/j.scs.2024.105933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ecological resilience assessment has become a key link in urban sustainable governance. This study introduces a new evaluation framework to inform policy-making and practical applications. Based on the structural and functional dimensions of landscape patterns, it integrates the vulnerability, sensitivity and self-organization of resilience to point to desirable directions of ecological resilience. A composite ecological resilience index is compiled based on six indices of landscape diversity, landscape disturbance, source-sink patch distance, habitat quality, minimum cumulative resistance, and landscape restoration. The framework is particularly applicable to cities located in ecologically sensitive areas. Hence, Nanchang City, China was selected as a case study. Using 1km<sup>2</sup> hexagonal grids, the framework is applied to map spatiotemporal changes and to analyze various natural and anthropogenic driving forces of ecological resilience in Nanchang from 2000 to 2020. Research findings confirm the feasibility and value of the urban ecological resilience analysis framework. They also highlight the advantages of the framework in revealing spatially dynamic processes and ecological resilience contributing factors, making it a valuable and practical tool for sustainable urban planning and refined management decision-making.</div></div>\",\"PeriodicalId\":48659,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":\"116 \",\"pages\":\"Article 105933\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210670724007571\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007571","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
The evolution of urban ecological resilience: An evaluation framework based on vulnerability, sensitivity and self-organization
Ecological resilience assessment has become a key link in urban sustainable governance. This study introduces a new evaluation framework to inform policy-making and practical applications. Based on the structural and functional dimensions of landscape patterns, it integrates the vulnerability, sensitivity and self-organization of resilience to point to desirable directions of ecological resilience. A composite ecological resilience index is compiled based on six indices of landscape diversity, landscape disturbance, source-sink patch distance, habitat quality, minimum cumulative resistance, and landscape restoration. The framework is particularly applicable to cities located in ecologically sensitive areas. Hence, Nanchang City, China was selected as a case study. Using 1km2 hexagonal grids, the framework is applied to map spatiotemporal changes and to analyze various natural and anthropogenic driving forces of ecological resilience in Nanchang from 2000 to 2020. Research findings confirm the feasibility and value of the urban ecological resilience analysis framework. They also highlight the advantages of the framework in revealing spatially dynamic processes and ecological resilience contributing factors, making it a valuable and practical tool for sustainable urban planning and refined management decision-making.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;