用于锌离子水电池的高性能镍锰氧化物@MXene 纳米复合材料

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
{"title":"用于锌离子水电池的高性能镍锰氧化物@MXene 纳米复合材料","authors":"","doi":"10.1016/j.jpcs.2024.112411","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous consumption of lithium resources and the safety risks brought by organic electrolytes in lithium-ion batteries, aqueous zinc-ion batteries are expected to be the next generation of key energy storage devices to replace lithium-ion batteries. Among many zinc-ion battery cathode materials, manganese-based materials and MXene materials occupy the main positions respectively. Among them, Nickel manganate (NiMn<sub>2</sub>O<sub>4</sub>) nanosheets and MXene as active materials have received extensive attention. In addition, MXene has excellent electrical conductivity and is conducive to ion transport, and NiMn<sub>2</sub>O<sub>4</sub> nanosheets provide more active sites for electrochemical reactions. At a current density of 0.2 A g<sup>−1</sup>, the NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposite obtained a high specific capacitance of 319.9 mAh g<sup>−1</sup>. In addition, NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposites showed A high specific capacity of 129.8 mAh g<sup>−1</sup> after 800 cycles at a current density of 0.5 A g<sup>−1</sup>. Therefore, NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposites are expected to be a strong contender for the next generation of zinc-ion battery cathode materials in high energy density storage systems.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the continuous consumption of lithium resources and the safety risks brought by organic electrolytes in lithium-ion batteries, aqueous zinc-ion batteries are expected to be the next generation of key energy storage devices to replace lithium-ion batteries. Among many zinc-ion battery cathode materials, manganese-based materials and MXene materials occupy the main positions respectively. Among them, Nickel manganate (NiMn<sub>2</sub>O<sub>4</sub>) nanosheets and MXene as active materials have received extensive attention. In addition, MXene has excellent electrical conductivity and is conducive to ion transport, and NiMn<sub>2</sub>O<sub>4</sub> nanosheets provide more active sites for electrochemical reactions. At a current density of 0.2 A g<sup>−1</sup>, the NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposite obtained a high specific capacitance of 319.9 mAh g<sup>−1</sup>. In addition, NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposites showed A high specific capacity of 129.8 mAh g<sup>−1</sup> after 800 cycles at a current density of 0.5 A g<sup>−1</sup>. Therefore, NiMn<sub>2</sub>O<sub>4</sub>@MXene nanocomposites are expected to be a strong contender for the next generation of zinc-ion battery cathode materials in high energy density storage systems.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005468\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005468","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着锂资源的不断消耗以及锂离子电池中有机电解质带来的安全隐患,水性锌离子电池有望成为替代锂离子电池的下一代关键储能设备。在众多锌离子电池正极材料中,锰基材料和 MXene 材料分别占据主要地位。其中,锰酸镍(NiMn2O4)纳米片和 MXene 作为活性材料受到广泛关注。此外,MXene 具有优异的导电性,有利于离子传输,而 NiMn2O4 纳米片则为电化学反应提供了更多的活性位点。在 0.2 A g-1 的电流密度下,NiMn2O4@MXene 纳米复合材料获得了 319.9 mAh g-1 的高比电容。此外,NiMn2O4@MXene 纳米复合材料在 0.5 A g-1 的电流密度下循环 800 次后显示出 129.8 mAh g-1 的高比容量。因此,NiMn2O4@MXene 纳米复合材料有望成为高能量密度存储系统中下一代锌离子电池正极材料的有力竞争者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery
With the continuous consumption of lithium resources and the safety risks brought by organic electrolytes in lithium-ion batteries, aqueous zinc-ion batteries are expected to be the next generation of key energy storage devices to replace lithium-ion batteries. Among many zinc-ion battery cathode materials, manganese-based materials and MXene materials occupy the main positions respectively. Among them, Nickel manganate (NiMn2O4) nanosheets and MXene as active materials have received extensive attention. In addition, MXene has excellent electrical conductivity and is conducive to ion transport, and NiMn2O4 nanosheets provide more active sites for electrochemical reactions. At a current density of 0.2 A g−1, the NiMn2O4@MXene nanocomposite obtained a high specific capacitance of 319.9 mAh g−1. In addition, NiMn2O4@MXene nanocomposites showed A high specific capacity of 129.8 mAh g−1 after 800 cycles at a current density of 0.5 A g−1. Therefore, NiMn2O4@MXene nanocomposites are expected to be a strong contender for the next generation of zinc-ion battery cathode materials in high energy density storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信