Mohamed J. Saadh , Amirmohammad Khalifehsoltani , Abbas Hameed Abdul Hussein , Omer Qutaiba B. Allela , Hayder Naji Sameer , Jasur Rizaev , Huda Ghassan Hameed , Ameer Hassan Idan , Fahad Alsaikhan
{"title":"癌症转移中的外泌体 microRNA:肿瘤微环境与大环境之间的桥梁","authors":"Mohamed J. Saadh , Amirmohammad Khalifehsoltani , Abbas Hameed Abdul Hussein , Omer Qutaiba B. Allela , Hayder Naji Sameer , Jasur Rizaev , Huda Ghassan Hameed , Ameer Hassan Idan , Fahad Alsaikhan","doi":"10.1016/j.prp.2024.155666","DOIUrl":null,"url":null,"abstract":"<div><div>Malignant tumors are complicated structures of cancer cells that are constantly in communication with their local and distant environment. Exosomes are released by tumor cells and can facilitate the cell-cell interaction within the local microenvironment and the primary tumor. In fact, exosomes are secreted by both tumor and non-tumor cells, to provide a mutual communication network between cells and their micro- and/or macro-environments. Exososmes can contain a variety of biological cargos mostly based on their originated cells. Uptake of these exosomes by their recipient cells results in the alterations that their cargo can exert. MicroRNAs are identified as one of the most critical exosomal components, considering their pivotal regulatory roles in distinct biological process, including metastasis. Release and absorbance of exosomal microRNAs is possible by various cells within the host, and can have distinct biological consequences. Therefore, in this review we will discuss the role of exosomal microRNAs derived from tumor cells and untransformed cells within their micro- and macroenvironment in cancer progression and metastasis.</div></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomal microRNAs in cancer metastasis: A bridge between tumor micro and macroenvironment\",\"authors\":\"Mohamed J. Saadh , Amirmohammad Khalifehsoltani , Abbas Hameed Abdul Hussein , Omer Qutaiba B. Allela , Hayder Naji Sameer , Jasur Rizaev , Huda Ghassan Hameed , Ameer Hassan Idan , Fahad Alsaikhan\",\"doi\":\"10.1016/j.prp.2024.155666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Malignant tumors are complicated structures of cancer cells that are constantly in communication with their local and distant environment. Exosomes are released by tumor cells and can facilitate the cell-cell interaction within the local microenvironment and the primary tumor. In fact, exosomes are secreted by both tumor and non-tumor cells, to provide a mutual communication network between cells and their micro- and/or macro-environments. Exososmes can contain a variety of biological cargos mostly based on their originated cells. Uptake of these exosomes by their recipient cells results in the alterations that their cargo can exert. MicroRNAs are identified as one of the most critical exosomal components, considering their pivotal regulatory roles in distinct biological process, including metastasis. Release and absorbance of exosomal microRNAs is possible by various cells within the host, and can have distinct biological consequences. Therefore, in this review we will discuss the role of exosomal microRNAs derived from tumor cells and untransformed cells within their micro- and macroenvironment in cancer progression and metastasis.</div></div>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0344033824005776\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824005776","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Exosomal microRNAs in cancer metastasis: A bridge between tumor micro and macroenvironment
Malignant tumors are complicated structures of cancer cells that are constantly in communication with their local and distant environment. Exosomes are released by tumor cells and can facilitate the cell-cell interaction within the local microenvironment and the primary tumor. In fact, exosomes are secreted by both tumor and non-tumor cells, to provide a mutual communication network between cells and their micro- and/or macro-environments. Exososmes can contain a variety of biological cargos mostly based on their originated cells. Uptake of these exosomes by their recipient cells results in the alterations that their cargo can exert. MicroRNAs are identified as one of the most critical exosomal components, considering their pivotal regulatory roles in distinct biological process, including metastasis. Release and absorbance of exosomal microRNAs is possible by various cells within the host, and can have distinct biological consequences. Therefore, in this review we will discuss the role of exosomal microRNAs derived from tumor cells and untransformed cells within their micro- and macroenvironment in cancer progression and metastasis.
期刊介绍:
Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.