Weitong Wang , Yuchen Ren , Qingyu Yu , Lijie Jiang , Chaojie Yu , Zhiwei Yue , Yue Wang , Jiajun Lu , Pengcheng Che , Junjie Li , Hong Sun
{"title":"通过抗氧化和抗炎预防腹膜粘连的可生物降解外泌体工程水凝胶","authors":"Weitong Wang , Yuchen Ren , Qingyu Yu , Lijie Jiang , Chaojie Yu , Zhiwei Yue , Yue Wang , Jiajun Lu , Pengcheng Che , Junjie Li , Hong Sun","doi":"10.1016/j.mtbio.2024.101312","DOIUrl":null,"url":null,"abstract":"<div><div>Peritoneal adhesions (PA) are a common and severe complication after abdominal surgery, impacting millions of patients worldwide. The use of anti-adhesion materials as physical barriers is an effective strategy to prevent postoperative adhesions. However, the local inflammatory microenvironment exerts a significant impact on the efficacy of anti-adhesion therapies. In this study, an injectable hydrogel based on oxidized dextran/carboxymethyl chitosan (DCC) is designed and prepared. Furthermore, the DCC hydrogel is specifically engineered to load the adipose mesenchymal stem cells (ADSCs)-derived exosomes (Exos) for the treatment of PA. The prepared DCC hydrogel can act as the physical barrier via covering the irregular wound surface effectively. Moreover, it shows controlled degradation property, enabling the regulated release of Exos. The DCC hydrogel loaded Exos (DCC/Exo) system has high antioxidant capacity, and can effectively modulate the inflammatory microenvironments and diminish apoptosis. Notably, it promotes a polarization shift towards the M2-like phenotype in macrophages. The RNA-seq analysis confirms that the DCC/Exo system exhibits significant anti-inflammatory properties and promotes a reduction in collagen deposition. Consequently, the DCC/Exo system can inhibit peritoneal adhesions significantly in a mouse cecum-abdominal wall injury model. These results demonstrate the DCC/Exo is an ideal material for preventing postoperative adhesions.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101312"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable exosome-engineered hydrogels for the prevention of peritoneal adhesions via anti-oxidation and anti-inflammation\",\"authors\":\"Weitong Wang , Yuchen Ren , Qingyu Yu , Lijie Jiang , Chaojie Yu , Zhiwei Yue , Yue Wang , Jiajun Lu , Pengcheng Che , Junjie Li , Hong Sun\",\"doi\":\"10.1016/j.mtbio.2024.101312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Peritoneal adhesions (PA) are a common and severe complication after abdominal surgery, impacting millions of patients worldwide. The use of anti-adhesion materials as physical barriers is an effective strategy to prevent postoperative adhesions. However, the local inflammatory microenvironment exerts a significant impact on the efficacy of anti-adhesion therapies. In this study, an injectable hydrogel based on oxidized dextran/carboxymethyl chitosan (DCC) is designed and prepared. Furthermore, the DCC hydrogel is specifically engineered to load the adipose mesenchymal stem cells (ADSCs)-derived exosomes (Exos) for the treatment of PA. The prepared DCC hydrogel can act as the physical barrier via covering the irregular wound surface effectively. Moreover, it shows controlled degradation property, enabling the regulated release of Exos. The DCC hydrogel loaded Exos (DCC/Exo) system has high antioxidant capacity, and can effectively modulate the inflammatory microenvironments and diminish apoptosis. Notably, it promotes a polarization shift towards the M2-like phenotype in macrophages. The RNA-seq analysis confirms that the DCC/Exo system exhibits significant anti-inflammatory properties and promotes a reduction in collagen deposition. Consequently, the DCC/Exo system can inhibit peritoneal adhesions significantly in a mouse cecum-abdominal wall injury model. These results demonstrate the DCC/Exo is an ideal material for preventing postoperative adhesions.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101312\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003739\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003739","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biodegradable exosome-engineered hydrogels for the prevention of peritoneal adhesions via anti-oxidation and anti-inflammation
Peritoneal adhesions (PA) are a common and severe complication after abdominal surgery, impacting millions of patients worldwide. The use of anti-adhesion materials as physical barriers is an effective strategy to prevent postoperative adhesions. However, the local inflammatory microenvironment exerts a significant impact on the efficacy of anti-adhesion therapies. In this study, an injectable hydrogel based on oxidized dextran/carboxymethyl chitosan (DCC) is designed and prepared. Furthermore, the DCC hydrogel is specifically engineered to load the adipose mesenchymal stem cells (ADSCs)-derived exosomes (Exos) for the treatment of PA. The prepared DCC hydrogel can act as the physical barrier via covering the irregular wound surface effectively. Moreover, it shows controlled degradation property, enabling the regulated release of Exos. The DCC hydrogel loaded Exos (DCC/Exo) system has high antioxidant capacity, and can effectively modulate the inflammatory microenvironments and diminish apoptosis. Notably, it promotes a polarization shift towards the M2-like phenotype in macrophages. The RNA-seq analysis confirms that the DCC/Exo system exhibits significant anti-inflammatory properties and promotes a reduction in collagen deposition. Consequently, the DCC/Exo system can inhibit peritoneal adhesions significantly in a mouse cecum-abdominal wall injury model. These results demonstrate the DCC/Exo is an ideal material for preventing postoperative adhesions.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).