{"title":"设计和制造用于准对称电容器的 Cu2O@MoS2/r-Go 树枝状二元电极--可持续方法","authors":"","doi":"10.1016/j.jics.2024.101411","DOIUrl":null,"url":null,"abstract":"<div><div>Modified hummers method to synthesise GO from powdered graphite and sodium molybdate, then green synthesised Cu<sub>2</sub>O/MoS<sub>2</sub>/rGO nanostructure prepared by economical microwave approach. XRD analysis proved that Cu<sub>2</sub>O and MoS<sub>2</sub>/rGO were present in the sample. FTIR spectra revealed a Cu<sub>2</sub>O group at around 620 cm<sup>−1</sup>, whilst EDAX analysis revealed Mo, Cu, S, O, and C characteristic bands. rGO material resembles the SEM image of Cu<sub>2</sub>O/MoS<sub>2</sub>-rGo in appearance, with dendritic morphologies of Cu<sub>2</sub>O and MoS<sub>2</sub> sheets on its exterior. When applied to nearby r-GO sheet formations, MoS2 thins down the layers. Incorporating rGO, a conductive material, into the MoS<sub>2</sub>/rGO composite greatly enhanced its capacity to store charges. Improved storage properties of the composite led to charge-discharge curves that were more symmetrical than those of pure MoS<sub>2</sub>. The significant heterostructure of 2D materials is responsible for their remarkable cyclic stability. Supercapacitors with a Cu<sub>2</sub>O/MoS<sub>2</sub>/r-GO nanostructure as manufactured are safe for use with batteries. Building 2D and 3D heterostructures to improve energy storage systems of the future is the goal of this endeavor.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and fabrication OF Cu2O@MoS2/r-Go dendrite binary electrode for quasi – Symmetric capacitor- sustainable approach\",\"authors\":\"\",\"doi\":\"10.1016/j.jics.2024.101411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modified hummers method to synthesise GO from powdered graphite and sodium molybdate, then green synthesised Cu<sub>2</sub>O/MoS<sub>2</sub>/rGO nanostructure prepared by economical microwave approach. XRD analysis proved that Cu<sub>2</sub>O and MoS<sub>2</sub>/rGO were present in the sample. FTIR spectra revealed a Cu<sub>2</sub>O group at around 620 cm<sup>−1</sup>, whilst EDAX analysis revealed Mo, Cu, S, O, and C characteristic bands. rGO material resembles the SEM image of Cu<sub>2</sub>O/MoS<sub>2</sub>-rGo in appearance, with dendritic morphologies of Cu<sub>2</sub>O and MoS<sub>2</sub> sheets on its exterior. When applied to nearby r-GO sheet formations, MoS2 thins down the layers. Incorporating rGO, a conductive material, into the MoS<sub>2</sub>/rGO composite greatly enhanced its capacity to store charges. Improved storage properties of the composite led to charge-discharge curves that were more symmetrical than those of pure MoS<sub>2</sub>. The significant heterostructure of 2D materials is responsible for their remarkable cyclic stability. Supercapacitors with a Cu<sub>2</sub>O/MoS<sub>2</sub>/r-GO nanostructure as manufactured are safe for use with batteries. Building 2D and 3D heterostructures to improve energy storage systems of the future is the goal of this endeavor.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019452224002917\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002917","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and fabrication OF Cu2O@MoS2/r-Go dendrite binary electrode for quasi – Symmetric capacitor- sustainable approach
Modified hummers method to synthesise GO from powdered graphite and sodium molybdate, then green synthesised Cu2O/MoS2/rGO nanostructure prepared by economical microwave approach. XRD analysis proved that Cu2O and MoS2/rGO were present in the sample. FTIR spectra revealed a Cu2O group at around 620 cm−1, whilst EDAX analysis revealed Mo, Cu, S, O, and C characteristic bands. rGO material resembles the SEM image of Cu2O/MoS2-rGo in appearance, with dendritic morphologies of Cu2O and MoS2 sheets on its exterior. When applied to nearby r-GO sheet formations, MoS2 thins down the layers. Incorporating rGO, a conductive material, into the MoS2/rGO composite greatly enhanced its capacity to store charges. Improved storage properties of the composite led to charge-discharge curves that were more symmetrical than those of pure MoS2. The significant heterostructure of 2D materials is responsible for their remarkable cyclic stability. Supercapacitors with a Cu2O/MoS2/r-GO nanostructure as manufactured are safe for use with batteries. Building 2D and 3D heterostructures to improve energy storage systems of the future is the goal of this endeavor.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.