Teng Liu , Hanying Xu , Wenping Feng , Jiale He , Tao Han , Jiteng Wang , Qingyang Wu , Chunlin Wang
{"title":"平衡作用:胆固醇和磷脂如何影响副螯蟹幼体的生长和脂质代谢","authors":"Teng Liu , Hanying Xu , Wenping Feng , Jiale He , Tao Han , Jiteng Wang , Qingyang Wu , Chunlin Wang","doi":"10.1016/j.aqrep.2024.102453","DOIUrl":null,"url":null,"abstract":"<div><div>A 2 × 3 two-factor experiment was designed to assess the effects of dietary cholesterol (CHO) and phospholipids (PLs) on growth and lipid metabolism in early juvenile mud crabs (0.01 g crab<sup>−1</sup>). The experimental diets were designed with two CHO levels: 0.40 % (LCH) and 0.80 % (HCH), and three PLs levels: 1.80 % (LPL), 2.50 % (MPL), and 3.20 % (HPL). The 58-day aquaculture trial demonstrated that the LCH-HPL group achieved the best growth performance in mud crabs, characterized by the highest final body weight, weight gain, and specific growth rate. Regarding whole-body composition, dietary PLs increased total cholesterol (T-CHO), PLs, triglyceride (TG), and crude lipid content in the LCH groups. Mud crabs in the HCH groups had a higher proportion of saturated fatty acids, a lower proportion of monounsaturated fatty acids, and increased gene expression of sterol regulatory element binding protein 1c (<em>srebp-1c</em>) and fatty acid synthase (<em>fas</em>) compared to those in the LCH groups. As the dietary PLs increased, mud crabs in the LCH groups exhibited up-regulation in the expression of genes, including <em>srebp-1c</em>, <em>fas</em>, elongation of very long-chain fatty acid protein 4 (<em>elovl4</em>), <em>elovl6</em>, and Δ9-fatty acid desaturase (<em>Δ9-fad</em>). In the HCH groups, elevated dietary PLs resulted in the down-regulation of fatty acid binding protein (<em>fabp</em>) gene expression. In addition, high levels of dietary CHO and PLs (HCH-HPL) inhibited the catalase activity of mud crabs, resulting in a significant increase in the malondialdehyde content. Correlation analysis revealed that dietary CHO was positively correlated with the expression of long-chain polyunsaturated fatty acids synthesizing genes, and dietary PLs were positively correlated with the whole-body lipid content of mud crabs. Additionally, a positive correlation was found between the growth performance and whole-body content of crude protein, crude lipid, and antioxidant capacity in mud crabs.</div></div>","PeriodicalId":8103,"journal":{"name":"Aquaculture Reports","volume":"39 ","pages":"Article 102453"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing act: How cholesterol and phospholipids influence juvenile mud crab Scylla paramamosain growth and lipid metabolism\",\"authors\":\"Teng Liu , Hanying Xu , Wenping Feng , Jiale He , Tao Han , Jiteng Wang , Qingyang Wu , Chunlin Wang\",\"doi\":\"10.1016/j.aqrep.2024.102453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A 2 × 3 two-factor experiment was designed to assess the effects of dietary cholesterol (CHO) and phospholipids (PLs) on growth and lipid metabolism in early juvenile mud crabs (0.01 g crab<sup>−1</sup>). The experimental diets were designed with two CHO levels: 0.40 % (LCH) and 0.80 % (HCH), and three PLs levels: 1.80 % (LPL), 2.50 % (MPL), and 3.20 % (HPL). The 58-day aquaculture trial demonstrated that the LCH-HPL group achieved the best growth performance in mud crabs, characterized by the highest final body weight, weight gain, and specific growth rate. Regarding whole-body composition, dietary PLs increased total cholesterol (T-CHO), PLs, triglyceride (TG), and crude lipid content in the LCH groups. Mud crabs in the HCH groups had a higher proportion of saturated fatty acids, a lower proportion of monounsaturated fatty acids, and increased gene expression of sterol regulatory element binding protein 1c (<em>srebp-1c</em>) and fatty acid synthase (<em>fas</em>) compared to those in the LCH groups. As the dietary PLs increased, mud crabs in the LCH groups exhibited up-regulation in the expression of genes, including <em>srebp-1c</em>, <em>fas</em>, elongation of very long-chain fatty acid protein 4 (<em>elovl4</em>), <em>elovl6</em>, and Δ9-fatty acid desaturase (<em>Δ9-fad</em>). In the HCH groups, elevated dietary PLs resulted in the down-regulation of fatty acid binding protein (<em>fabp</em>) gene expression. In addition, high levels of dietary CHO and PLs (HCH-HPL) inhibited the catalase activity of mud crabs, resulting in a significant increase in the malondialdehyde content. Correlation analysis revealed that dietary CHO was positively correlated with the expression of long-chain polyunsaturated fatty acids synthesizing genes, and dietary PLs were positively correlated with the whole-body lipid content of mud crabs. Additionally, a positive correlation was found between the growth performance and whole-body content of crude protein, crude lipid, and antioxidant capacity in mud crabs.</div></div>\",\"PeriodicalId\":8103,\"journal\":{\"name\":\"Aquaculture Reports\",\"volume\":\"39 \",\"pages\":\"Article 102453\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Reports\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352513424005416\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Reports","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352513424005416","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Balancing act: How cholesterol and phospholipids influence juvenile mud crab Scylla paramamosain growth and lipid metabolism
A 2 × 3 two-factor experiment was designed to assess the effects of dietary cholesterol (CHO) and phospholipids (PLs) on growth and lipid metabolism in early juvenile mud crabs (0.01 g crab−1). The experimental diets were designed with two CHO levels: 0.40 % (LCH) and 0.80 % (HCH), and three PLs levels: 1.80 % (LPL), 2.50 % (MPL), and 3.20 % (HPL). The 58-day aquaculture trial demonstrated that the LCH-HPL group achieved the best growth performance in mud crabs, characterized by the highest final body weight, weight gain, and specific growth rate. Regarding whole-body composition, dietary PLs increased total cholesterol (T-CHO), PLs, triglyceride (TG), and crude lipid content in the LCH groups. Mud crabs in the HCH groups had a higher proportion of saturated fatty acids, a lower proportion of monounsaturated fatty acids, and increased gene expression of sterol regulatory element binding protein 1c (srebp-1c) and fatty acid synthase (fas) compared to those in the LCH groups. As the dietary PLs increased, mud crabs in the LCH groups exhibited up-regulation in the expression of genes, including srebp-1c, fas, elongation of very long-chain fatty acid protein 4 (elovl4), elovl6, and Δ9-fatty acid desaturase (Δ9-fad). In the HCH groups, elevated dietary PLs resulted in the down-regulation of fatty acid binding protein (fabp) gene expression. In addition, high levels of dietary CHO and PLs (HCH-HPL) inhibited the catalase activity of mud crabs, resulting in a significant increase in the malondialdehyde content. Correlation analysis revealed that dietary CHO was positively correlated with the expression of long-chain polyunsaturated fatty acids synthesizing genes, and dietary PLs were positively correlated with the whole-body lipid content of mud crabs. Additionally, a positive correlation was found between the growth performance and whole-body content of crude protein, crude lipid, and antioxidant capacity in mud crabs.
Aquaculture ReportsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
5.90
自引率
8.10%
发文量
469
审稿时长
77 days
期刊介绍:
Aquaculture Reports will publish original research papers and reviews documenting outstanding science with a regional context and focus, answering the need for high quality information on novel species, systems and regions in emerging areas of aquaculture research and development, such as integrated multi-trophic aquaculture, urban aquaculture, ornamental, unfed aquaculture, offshore aquaculture and others. Papers having industry research as priority and encompassing product development research or current industry practice are encouraged.