分层贝叶斯半参数模型在确定最佳施肥量时进行测量误差校正

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Amos Kipkorir Langat , Samuel Musili Mwalili , Lawrence Ndekeleni Kazembe
{"title":"分层贝叶斯半参数模型在确定最佳施肥量时进行测量误差校正","authors":"Amos Kipkorir Langat ,&nbsp;Samuel Musili Mwalili ,&nbsp;Lawrence Ndekeleni Kazembe","doi":"10.1016/j.sciaf.2024.e02423","DOIUrl":null,"url":null,"abstract":"<div><div>Measurement errors present a substantial challenge in accurately determining optimal fertilizer application levels, directly impacting agricultural efficiency and cost-effectiveness. This study examines the use of Hierarchical Bayesian Semi-Parametric (HBS) models to correct these errors, thereby improving precision in agricultural decision-making. By applying these models to a decade of data from Uasin Gishu County, Kenya, we evaluated key variables including maize yield, land size, and fertilizer levels. The results indicate that the HBS models effectively mitigate both systematic and random errors, leading to more accurate fertilizer recommendations. This advancement supports better resource management and higher crop yields. Our findings underscore the value of Bayesian methods in agricultural data analysis and highlight the critical role of accurate measurement and correction in achieving optimal outcomes. The implications of this research extend to improved decision-making processes and more sustainable agricultural practices.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02423"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Bayesian semi-parametric models for measurement error correction in determining optimal fertilizer application levels\",\"authors\":\"Amos Kipkorir Langat ,&nbsp;Samuel Musili Mwalili ,&nbsp;Lawrence Ndekeleni Kazembe\",\"doi\":\"10.1016/j.sciaf.2024.e02423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Measurement errors present a substantial challenge in accurately determining optimal fertilizer application levels, directly impacting agricultural efficiency and cost-effectiveness. This study examines the use of Hierarchical Bayesian Semi-Parametric (HBS) models to correct these errors, thereby improving precision in agricultural decision-making. By applying these models to a decade of data from Uasin Gishu County, Kenya, we evaluated key variables including maize yield, land size, and fertilizer levels. The results indicate that the HBS models effectively mitigate both systematic and random errors, leading to more accurate fertilizer recommendations. This advancement supports better resource management and higher crop yields. Our findings underscore the value of Bayesian methods in agricultural data analysis and highlight the critical role of accurate measurement and correction in achieving optimal outcomes. The implications of this research extend to improved decision-making processes and more sustainable agricultural practices.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"26 \",\"pages\":\"Article e02423\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246822762400365X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246822762400365X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

测量误差是准确确定最佳施肥量的巨大挑战,直接影响农业效率和成本效益。本研究探讨了如何利用层次贝叶斯半参数(HBS)模型来纠正这些误差,从而提高农业决策的精确度。通过将这些模型应用于肯尼亚 Uasin Gishu 县的十年数据,我们评估了包括玉米产量、土地面积和肥料水平在内的关键变量。结果表明,HBS 模型有效地减少了系统误差和随机误差,使肥料建议更加准确。这一进步有助于改善资源管理,提高作物产量。我们的研究结果突出了贝叶斯方法在农业数据分析中的价值,并强调了精确测量和校正在实现最佳结果中的关键作用。这项研究的意义还包括改进决策过程和更可持续的农业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Bayesian semi-parametric models for measurement error correction in determining optimal fertilizer application levels
Measurement errors present a substantial challenge in accurately determining optimal fertilizer application levels, directly impacting agricultural efficiency and cost-effectiveness. This study examines the use of Hierarchical Bayesian Semi-Parametric (HBS) models to correct these errors, thereby improving precision in agricultural decision-making. By applying these models to a decade of data from Uasin Gishu County, Kenya, we evaluated key variables including maize yield, land size, and fertilizer levels. The results indicate that the HBS models effectively mitigate both systematic and random errors, leading to more accurate fertilizer recommendations. This advancement supports better resource management and higher crop yields. Our findings underscore the value of Bayesian methods in agricultural data analysis and highlight the critical role of accurate measurement and correction in achieving optimal outcomes. The implications of this research extend to improved decision-making processes and more sustainable agricultural practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信