Xiaoling Wang , Rui Qian , Yafang Han , Zhe Ji , Qingxuan Yang , Longlong Wang , Xiaoli Chen , Kun Ma , Kadambot H.M. Siddique , Zhikuan Jia , Xiaolong Ren
{"title":"在干旱和半干旱地区,秸秆还田可以通过调节土壤细菌和改善土壤性质来提高玉米产量","authors":"Xiaoling Wang , Rui Qian , Yafang Han , Zhe Ji , Qingxuan Yang , Longlong Wang , Xiaoli Chen , Kun Ma , Kadambot H.M. Siddique , Zhikuan Jia , Xiaolong Ren","doi":"10.1016/j.eja.2024.127389","DOIUrl":null,"url":null,"abstract":"<div><div>Straw return has been found to benefit soil fertility and crop yield, however, by which it affects microbial communities to mediate soil factors driving crop yields under maize continuous cropping systems in dryland areas is still unclear. To fill this gap, a 6-year field experiment was established with five straw return amounts (T0, T1, T2, T3, and T4, representing 0, 3000, 6000, 9000, and 12,000 kg ha<sup>−1</sup> of straw, respectively), and investigated the effects of on soil properties, enzymes, bacterial community composition and diversity, and crop yields. Our analysis showed that soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents significantly increased by 1–8 %, 5–25 %, and 2–9 % under straw return treatments, respectively, compared to the T0, and soil catalase, urease, and alkaline phosphatase activities increased by at least 34.00 %. Additionally, crop yield significantly increased by 4.23–12.00 % under T1-T4 treatments, and showed highly significant relationships with SOC, TN, and TP. Importantly, we found straw return significantly altered the community of bacteria involved in the carbon and nitrogen cycle, and their abundance of strong responses depending on the amounts of straw return. For example, straw input increased the abundance of Proteobacteria (+2.64–5.57 %), Acidobacteria (+3.82–13.83 %), and Bacteroidetes (+15.37–30.49 %). Similarly, the amount of straw application increased the bacterial diversity indexes (Shannon, 2.65–10.93 %; Chao1, 13.47–18.50 %), and had significant positive correlations with SOC, TN, and TP contents. Structural equation models (SEM) revealed that straw return management practice had positive and indirect effects on crop yields by influencing soil properties or the bacteria community. In conclusion, our findings revealed common associations and variations of bacterial community diversity with soil factors and crop yields at different straw return rates, and these findings provide insights and options for the development of better straw return strategies and sustainable agriculture in semi-arid regions.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Straw return can increase maize yield by regulating soil bacteria and improving soil properties in arid and semi-arid areas\",\"authors\":\"Xiaoling Wang , Rui Qian , Yafang Han , Zhe Ji , Qingxuan Yang , Longlong Wang , Xiaoli Chen , Kun Ma , Kadambot H.M. Siddique , Zhikuan Jia , Xiaolong Ren\",\"doi\":\"10.1016/j.eja.2024.127389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Straw return has been found to benefit soil fertility and crop yield, however, by which it affects microbial communities to mediate soil factors driving crop yields under maize continuous cropping systems in dryland areas is still unclear. To fill this gap, a 6-year field experiment was established with five straw return amounts (T0, T1, T2, T3, and T4, representing 0, 3000, 6000, 9000, and 12,000 kg ha<sup>−1</sup> of straw, respectively), and investigated the effects of on soil properties, enzymes, bacterial community composition and diversity, and crop yields. Our analysis showed that soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents significantly increased by 1–8 %, 5–25 %, and 2–9 % under straw return treatments, respectively, compared to the T0, and soil catalase, urease, and alkaline phosphatase activities increased by at least 34.00 %. Additionally, crop yield significantly increased by 4.23–12.00 % under T1-T4 treatments, and showed highly significant relationships with SOC, TN, and TP. Importantly, we found straw return significantly altered the community of bacteria involved in the carbon and nitrogen cycle, and their abundance of strong responses depending on the amounts of straw return. For example, straw input increased the abundance of Proteobacteria (+2.64–5.57 %), Acidobacteria (+3.82–13.83 %), and Bacteroidetes (+15.37–30.49 %). Similarly, the amount of straw application increased the bacterial diversity indexes (Shannon, 2.65–10.93 %; Chao1, 13.47–18.50 %), and had significant positive correlations with SOC, TN, and TP contents. Structural equation models (SEM) revealed that straw return management practice had positive and indirect effects on crop yields by influencing soil properties or the bacteria community. In conclusion, our findings revealed common associations and variations of bacterial community diversity with soil factors and crop yields at different straw return rates, and these findings provide insights and options for the development of better straw return strategies and sustainable agriculture in semi-arid regions.</div></div>\",\"PeriodicalId\":51045,\"journal\":{\"name\":\"European Journal of Agronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Agronomy\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1161030124003101\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124003101","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Straw return can increase maize yield by regulating soil bacteria and improving soil properties in arid and semi-arid areas
Straw return has been found to benefit soil fertility and crop yield, however, by which it affects microbial communities to mediate soil factors driving crop yields under maize continuous cropping systems in dryland areas is still unclear. To fill this gap, a 6-year field experiment was established with five straw return amounts (T0, T1, T2, T3, and T4, representing 0, 3000, 6000, 9000, and 12,000 kg ha−1 of straw, respectively), and investigated the effects of on soil properties, enzymes, bacterial community composition and diversity, and crop yields. Our analysis showed that soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) contents significantly increased by 1–8 %, 5–25 %, and 2–9 % under straw return treatments, respectively, compared to the T0, and soil catalase, urease, and alkaline phosphatase activities increased by at least 34.00 %. Additionally, crop yield significantly increased by 4.23–12.00 % under T1-T4 treatments, and showed highly significant relationships with SOC, TN, and TP. Importantly, we found straw return significantly altered the community of bacteria involved in the carbon and nitrogen cycle, and their abundance of strong responses depending on the amounts of straw return. For example, straw input increased the abundance of Proteobacteria (+2.64–5.57 %), Acidobacteria (+3.82–13.83 %), and Bacteroidetes (+15.37–30.49 %). Similarly, the amount of straw application increased the bacterial diversity indexes (Shannon, 2.65–10.93 %; Chao1, 13.47–18.50 %), and had significant positive correlations with SOC, TN, and TP contents. Structural equation models (SEM) revealed that straw return management practice had positive and indirect effects on crop yields by influencing soil properties or the bacteria community. In conclusion, our findings revealed common associations and variations of bacterial community diversity with soil factors and crop yields at different straw return rates, and these findings provide insights and options for the development of better straw return strategies and sustainable agriculture in semi-arid regions.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.