{"title":"填充碳黑的聚氯丁烯的海洋耐久性:海水老化对网络、拉伸和疲劳性能的影响","authors":"H. Madeira , P.Y. Le Gac , M. Le Gall , E. Verron","doi":"10.1016/j.polymdegradstab.2024.111045","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of marine renewable energies, the durability of materials at sea is more than ever a major issue in reducing the risk of failure of offshore devices. In this aggressive environment, elastomers, and in particular polychloroprene (CR), have many applications because of their good damping and fatigue properties. However, these materials are subject to ageing in service, which leads to changes in their mechanical properties. The ageing of these materials in a marine environment has not been extensively studied, despite the need to predict components lifetimes. This paper investigates the mechanical and microstructural consequences of a carbon black-filled CR degradation when exposed to seawater. To this end, swelling, uniaxial tensile and fatigue tests are carried out on materials previously subjected to accelerated ageing in natural seawater. Particular attention is paid to understanding the physico-chemical phenomena involved, and analysing fracture and fatigue properties in relation to those of the macromolecular network.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111045"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marine durability of carbon black-filled polychloroprene: Effect of seawater ageing on network, tensile and fatigue properties\",\"authors\":\"H. Madeira , P.Y. Le Gac , M. Le Gall , E. Verron\",\"doi\":\"10.1016/j.polymdegradstab.2024.111045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the development of marine renewable energies, the durability of materials at sea is more than ever a major issue in reducing the risk of failure of offshore devices. In this aggressive environment, elastomers, and in particular polychloroprene (CR), have many applications because of their good damping and fatigue properties. However, these materials are subject to ageing in service, which leads to changes in their mechanical properties. The ageing of these materials in a marine environment has not been extensively studied, despite the need to predict components lifetimes. This paper investigates the mechanical and microstructural consequences of a carbon black-filled CR degradation when exposed to seawater. To this end, swelling, uniaxial tensile and fatigue tests are carried out on materials previously subjected to accelerated ageing in natural seawater. Particular attention is paid to understanding the physico-chemical phenomena involved, and analysing fracture and fatigue properties in relation to those of the macromolecular network.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"230 \",\"pages\":\"Article 111045\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003884\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003884","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Marine durability of carbon black-filled polychloroprene: Effect of seawater ageing on network, tensile and fatigue properties
With the development of marine renewable energies, the durability of materials at sea is more than ever a major issue in reducing the risk of failure of offshore devices. In this aggressive environment, elastomers, and in particular polychloroprene (CR), have many applications because of their good damping and fatigue properties. However, these materials are subject to ageing in service, which leads to changes in their mechanical properties. The ageing of these materials in a marine environment has not been extensively studied, despite the need to predict components lifetimes. This paper investigates the mechanical and microstructural consequences of a carbon black-filled CR degradation when exposed to seawater. To this end, swelling, uniaxial tensile and fatigue tests are carried out on materials previously subjected to accelerated ageing in natural seawater. Particular attention is paid to understanding the physico-chemical phenomena involved, and analysing fracture and fatigue properties in relation to those of the macromolecular network.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.