Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Bhumikaben Makawana , Ram K. Gupta , Mostafa A. Abdel-Maksoud , Abdul Malik , Wahidah H. Al-Qahtani
{"title":"提高能量储存和生产效率:利用 BaS3:Ni2S3:利用二硫代氨基甲酸盐前体合成的 Sb2S3 实现增强型可持续能源解决方案","authors":"Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Bhumikaben Makawana , Ram K. Gupta , Mostafa A. Abdel-Maksoud , Abdul Malik , Wahidah H. Al-Qahtani","doi":"10.1016/j.jpcs.2024.112394","DOIUrl":null,"url":null,"abstract":"<div><div>During this period of increasing energy use, the scientific community and energy stakeholders have been closely monitoring electrochemical energy storage. In an attempt to enhance the functionality of charge storage devices, diethyldithiocarbamate ligand is employed as a chelating agent during the production of the novel BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub>. The semiconductor BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub>, which was made in an environmentally friendly manner, showed good photoactivity due to its 2.97 eV energy band gap and light absorption. The resultant chalcogenide had an average crystallite size of 19.69 nm and displayed outstanding crystallinity with mixed crystallographic phases. Furthermore, infrared spectroscopy was used to investigate metallic sulfide connections, and the findings indicated that they varied between 500 and 875 cm<sup>−1</sup>. This chalcogenide featured varied sites for electrochemical reactions due to its morphology. The electrochemical performance of BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub> was assessed using a conventional three-electrode setup. With a specific capacitance of up to 1019.4 F g<sup>−1</sup> and a power density of 11931.26 W kg<sup>−1</sup>, BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub> has proven to be an excellent electrode material for energy storage. This remarkable electrochemical performance was further reinforced by the comparable series resistance (<em>R</em><sub><em>s</em></sub>) of 0.57 Ω. During electrocatalysis, the electrode produced an OER overpotential with a Tafel slope of 348 mV and 119 mV dec<sup>−1</sup>. In contrast, the overpotential and Tafel slope in terms of the HER activity and were 211 mV and 100 mV/dec, respectively.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112394"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amplifying energy storage and production efficiency: Utilizing BaS3: Ni2S3: Sb2S3 synthesized from dithiocarbamate precursors for enhanced and sustainable energy solutions\",\"authors\":\"Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Bhumikaben Makawana , Ram K. Gupta , Mostafa A. Abdel-Maksoud , Abdul Malik , Wahidah H. Al-Qahtani\",\"doi\":\"10.1016/j.jpcs.2024.112394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>During this period of increasing energy use, the scientific community and energy stakeholders have been closely monitoring electrochemical energy storage. In an attempt to enhance the functionality of charge storage devices, diethyldithiocarbamate ligand is employed as a chelating agent during the production of the novel BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub>. The semiconductor BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub>, which was made in an environmentally friendly manner, showed good photoactivity due to its 2.97 eV energy band gap and light absorption. The resultant chalcogenide had an average crystallite size of 19.69 nm and displayed outstanding crystallinity with mixed crystallographic phases. Furthermore, infrared spectroscopy was used to investigate metallic sulfide connections, and the findings indicated that they varied between 500 and 875 cm<sup>−1</sup>. This chalcogenide featured varied sites for electrochemical reactions due to its morphology. The electrochemical performance of BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub> was assessed using a conventional three-electrode setup. With a specific capacitance of up to 1019.4 F g<sup>−1</sup> and a power density of 11931.26 W kg<sup>−1</sup>, BaS<sub>3</sub>: Ni<sub>2</sub>S<sub>3</sub>: Sb<sub>2</sub>S<sub>3</sub> has proven to be an excellent electrode material for energy storage. This remarkable electrochemical performance was further reinforced by the comparable series resistance (<em>R</em><sub><em>s</em></sub>) of 0.57 Ω. During electrocatalysis, the electrode produced an OER overpotential with a Tafel slope of 348 mV and 119 mV dec<sup>−1</sup>. In contrast, the overpotential and Tafel slope in terms of the HER activity and were 211 mV and 100 mV/dec, respectively.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112394\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005298\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005298","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Amplifying energy storage and production efficiency: Utilizing BaS3: Ni2S3: Sb2S3 synthesized from dithiocarbamate precursors for enhanced and sustainable energy solutions
During this period of increasing energy use, the scientific community and energy stakeholders have been closely monitoring electrochemical energy storage. In an attempt to enhance the functionality of charge storage devices, diethyldithiocarbamate ligand is employed as a chelating agent during the production of the novel BaS3: Ni2S3: Sb2S3. The semiconductor BaS3: Ni2S3: Sb2S3, which was made in an environmentally friendly manner, showed good photoactivity due to its 2.97 eV energy band gap and light absorption. The resultant chalcogenide had an average crystallite size of 19.69 nm and displayed outstanding crystallinity with mixed crystallographic phases. Furthermore, infrared spectroscopy was used to investigate metallic sulfide connections, and the findings indicated that they varied between 500 and 875 cm−1. This chalcogenide featured varied sites for electrochemical reactions due to its morphology. The electrochemical performance of BaS3: Ni2S3: Sb2S3 was assessed using a conventional three-electrode setup. With a specific capacitance of up to 1019.4 F g−1 and a power density of 11931.26 W kg−1, BaS3: Ni2S3: Sb2S3 has proven to be an excellent electrode material for energy storage. This remarkable electrochemical performance was further reinforced by the comparable series resistance (Rs) of 0.57 Ω. During electrocatalysis, the electrode produced an OER overpotential with a Tafel slope of 348 mV and 119 mV dec−1. In contrast, the overpotential and Tafel slope in terms of the HER activity and were 211 mV and 100 mV/dec, respectively.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.