Nondon Lal Dey , Md. Shamim Reza , Avijit Ghosh , Hmoud Al-Dmour , Mahbuba Moumita , Md. Selim Reza , Sabina Sultana , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Nasser S. Awwad , Hala A. Ibrahium
{"title":"通过比较不同的电子和空穴传输层优化基于 Sr3NCl3 的过氧化物太阳能电池的性能","authors":"Nondon Lal Dey , Md. Shamim Reza , Avijit Ghosh , Hmoud Al-Dmour , Mahbuba Moumita , Md. Selim Reza , Sabina Sultana , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Nasser S. Awwad , Hala A. Ibrahium","doi":"10.1016/j.jpcs.2024.112386","DOIUrl":null,"url":null,"abstract":"<div><div>Strontium Nitride Trichloride (Sr<sub>3</sub>NCl<sub>3</sub>) is a promising absorber material for solar cells due to its unique structural, electrical, and optical properties. We conducted a thorough investigation to scrutinize the structural, optical, and electronic characteristics and the photovoltaic efficiency of double-heterojunction solar cells utilizing Sr<sub>3</sub>NCl<sub>3</sub> absorbers. Various metals were evaluated for the front and rear contacts to determine the optimal metal-semiconductor interface, with the study determining that silver (Ag) is the most suitable option for the front contact and nickel (Ni) for the back contact. The PV performance of innovative Sr<sub>3</sub>NCl<sub>3</sub> absorber-based cell structures was evaluated with two different Hole Transport Layers (HTLs), MASnBe<sub>3</sub> and CBTS, alongside ZnO and WS<sub>2</sub> serving as the transition metal dichalcogenide (TMD) Electron Transport Layers (ETLs). This investigation examined a range of factors, such as layer thickness, operational temperature, doping density, defect densities at both the interfaces and within the bulk, carrier generation and recombination rates, quantum efficiency (QE), series versus shunt resistance, absorption coefficient, and current density-voltage (J-V) characteristics, utilizing the SCAPS-1D simulator software. Fine-tuning of both two HTL and ETL revealed that the highest power conversion efficiency (PCE) of 27.34 % with <em>J</em><sub><em>SC</em></sub> of 19.78 mA/cm<sup>2</sup>, fill factor (FF) of 88.84 %, and <em>V</em><sub><em>OC</em></sub> of 1.56 V was achieved with MASnBe<sub>3</sub> HTL and ZnO ETL, while the lowest PCE of 25.55 %, with <em>J</em><sub><em>SC</em></sub> of 19.77 mA/cm<sup>2</sup>, FF of 89.07 %, and <em>V</em><sub><em>OC</em></sub> of 1.45 V was obtained for CBTS HTL and WS<sub>2</sub> ETL, respectively. These findings highlight the promising potential of Sr<sub>3</sub>NCl<sub>3</sub> absorbers with ZnO as ETL and MASnBe<sub>3</sub> as HTL for developing advanced perovskites heterostructure solar cells for enhanced performance in the future.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112386"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Sr3NCl3-based perovskite solar cell performance through the comparison of different electron and hole transport layers\",\"authors\":\"Nondon Lal Dey , Md. Shamim Reza , Avijit Ghosh , Hmoud Al-Dmour , Mahbuba Moumita , Md. Selim Reza , Sabina Sultana , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Nasser S. Awwad , Hala A. Ibrahium\",\"doi\":\"10.1016/j.jpcs.2024.112386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Strontium Nitride Trichloride (Sr<sub>3</sub>NCl<sub>3</sub>) is a promising absorber material for solar cells due to its unique structural, electrical, and optical properties. We conducted a thorough investigation to scrutinize the structural, optical, and electronic characteristics and the photovoltaic efficiency of double-heterojunction solar cells utilizing Sr<sub>3</sub>NCl<sub>3</sub> absorbers. Various metals were evaluated for the front and rear contacts to determine the optimal metal-semiconductor interface, with the study determining that silver (Ag) is the most suitable option for the front contact and nickel (Ni) for the back contact. The PV performance of innovative Sr<sub>3</sub>NCl<sub>3</sub> absorber-based cell structures was evaluated with two different Hole Transport Layers (HTLs), MASnBe<sub>3</sub> and CBTS, alongside ZnO and WS<sub>2</sub> serving as the transition metal dichalcogenide (TMD) Electron Transport Layers (ETLs). This investigation examined a range of factors, such as layer thickness, operational temperature, doping density, defect densities at both the interfaces and within the bulk, carrier generation and recombination rates, quantum efficiency (QE), series versus shunt resistance, absorption coefficient, and current density-voltage (J-V) characteristics, utilizing the SCAPS-1D simulator software. Fine-tuning of both two HTL and ETL revealed that the highest power conversion efficiency (PCE) of 27.34 % with <em>J</em><sub><em>SC</em></sub> of 19.78 mA/cm<sup>2</sup>, fill factor (FF) of 88.84 %, and <em>V</em><sub><em>OC</em></sub> of 1.56 V was achieved with MASnBe<sub>3</sub> HTL and ZnO ETL, while the lowest PCE of 25.55 %, with <em>J</em><sub><em>SC</em></sub> of 19.77 mA/cm<sup>2</sup>, FF of 89.07 %, and <em>V</em><sub><em>OC</em></sub> of 1.45 V was obtained for CBTS HTL and WS<sub>2</sub> ETL, respectively. These findings highlight the promising potential of Sr<sub>3</sub>NCl<sub>3</sub> absorbers with ZnO as ETL and MASnBe<sub>3</sub> as HTL for developing advanced perovskites heterostructure solar cells for enhanced performance in the future.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112386\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005213\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005213","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of Sr3NCl3-based perovskite solar cell performance through the comparison of different electron and hole transport layers
Strontium Nitride Trichloride (Sr3NCl3) is a promising absorber material for solar cells due to its unique structural, electrical, and optical properties. We conducted a thorough investigation to scrutinize the structural, optical, and electronic characteristics and the photovoltaic efficiency of double-heterojunction solar cells utilizing Sr3NCl3 absorbers. Various metals were evaluated for the front and rear contacts to determine the optimal metal-semiconductor interface, with the study determining that silver (Ag) is the most suitable option for the front contact and nickel (Ni) for the back contact. The PV performance of innovative Sr3NCl3 absorber-based cell structures was evaluated with two different Hole Transport Layers (HTLs), MASnBe3 and CBTS, alongside ZnO and WS2 serving as the transition metal dichalcogenide (TMD) Electron Transport Layers (ETLs). This investigation examined a range of factors, such as layer thickness, operational temperature, doping density, defect densities at both the interfaces and within the bulk, carrier generation and recombination rates, quantum efficiency (QE), series versus shunt resistance, absorption coefficient, and current density-voltage (J-V) characteristics, utilizing the SCAPS-1D simulator software. Fine-tuning of both two HTL and ETL revealed that the highest power conversion efficiency (PCE) of 27.34 % with JSC of 19.78 mA/cm2, fill factor (FF) of 88.84 %, and VOC of 1.56 V was achieved with MASnBe3 HTL and ZnO ETL, while the lowest PCE of 25.55 %, with JSC of 19.77 mA/cm2, FF of 89.07 %, and VOC of 1.45 V was obtained for CBTS HTL and WS2 ETL, respectively. These findings highlight the promising potential of Sr3NCl3 absorbers with ZnO as ETL and MASnBe3 as HTL for developing advanced perovskites heterostructure solar cells for enhanced performance in the future.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.