{"title":"多维特征和时差序列观测的热带气旋路径预测模型","authors":"","doi":"10.1016/j.aej.2024.10.090","DOIUrl":null,"url":null,"abstract":"<div><div>Tropical Cyclones (TCs) are highly destructive weather phenomena that can cause significant social and economic damage. With the development of meteorological monitoring technology and the updating of database, accurately forecasting the track of TC movement is one of the effective ways to minimize losses. However, traditional movement track forecasting methods suffer the disadvantages of low efficiency and low accuracy. To address the these problems, a novel Convolutional Neural Network-Temporal Convolutional Network (CNN-TCN) model based on Multidimensional Features and Time Difference Series (MT-CNN-TCN) is presented in this paper. First, different types of meteorological data are processed and then the feature differences between adjoining moments are extracted. Second, a two-branch structure based on Two Dimensional Convolutional Neural Network (2DCNN), 3DCNN and TCN is taken to effectively integrate different types of meteorological features to strengthen its forecasting effect. Finally, experiments are conducted using Northwest Pacific TC data from years 2000–2019. Test results show that the proposed model MT-CNN-TCN can perform well at all three forecast periods (12 h, 24 h, and 48 h), with a significant improvement in accuracy by 7 %, 13 %, and 16 % respectively, compared with current forecasting methods such as Long Short Term Memory (LSTM).</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tropical cyclone track prediction model for multidimensional features and time differences series observation\",\"authors\":\"\",\"doi\":\"10.1016/j.aej.2024.10.090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tropical Cyclones (TCs) are highly destructive weather phenomena that can cause significant social and economic damage. With the development of meteorological monitoring technology and the updating of database, accurately forecasting the track of TC movement is one of the effective ways to minimize losses. However, traditional movement track forecasting methods suffer the disadvantages of low efficiency and low accuracy. To address the these problems, a novel Convolutional Neural Network-Temporal Convolutional Network (CNN-TCN) model based on Multidimensional Features and Time Difference Series (MT-CNN-TCN) is presented in this paper. First, different types of meteorological data are processed and then the feature differences between adjoining moments are extracted. Second, a two-branch structure based on Two Dimensional Convolutional Neural Network (2DCNN), 3DCNN and TCN is taken to effectively integrate different types of meteorological features to strengthen its forecasting effect. Finally, experiments are conducted using Northwest Pacific TC data from years 2000–2019. Test results show that the proposed model MT-CNN-TCN can perform well at all three forecast periods (12 h, 24 h, and 48 h), with a significant improvement in accuracy by 7 %, 13 %, and 16 % respectively, compared with current forecasting methods such as Long Short Term Memory (LSTM).</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824012559\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012559","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Tropical cyclone track prediction model for multidimensional features and time differences series observation
Tropical Cyclones (TCs) are highly destructive weather phenomena that can cause significant social and economic damage. With the development of meteorological monitoring technology and the updating of database, accurately forecasting the track of TC movement is one of the effective ways to minimize losses. However, traditional movement track forecasting methods suffer the disadvantages of low efficiency and low accuracy. To address the these problems, a novel Convolutional Neural Network-Temporal Convolutional Network (CNN-TCN) model based on Multidimensional Features and Time Difference Series (MT-CNN-TCN) is presented in this paper. First, different types of meteorological data are processed and then the feature differences between adjoining moments are extracted. Second, a two-branch structure based on Two Dimensional Convolutional Neural Network (2DCNN), 3DCNN and TCN is taken to effectively integrate different types of meteorological features to strengthen its forecasting effect. Finally, experiments are conducted using Northwest Pacific TC data from years 2000–2019. Test results show that the proposed model MT-CNN-TCN can perform well at all three forecast periods (12 h, 24 h, and 48 h), with a significant improvement in accuracy by 7 %, 13 %, and 16 % respectively, compared with current forecasting methods such as Long Short Term Memory (LSTM).
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering