NGT:具有可合成性保证的生成式人工智能从大规模虚拟筛选中发现 MC2R 抑制剂

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Saulo H. P de Oliveira, Aryan Pedawi, Victor Kenyon, Henry van den Bedem
{"title":"NGT:具有可合成性保证的生成式人工智能从大规模虚拟筛选中发现 MC2R 抑制剂","authors":"Saulo H. P de Oliveira, Aryan Pedawi, Victor Kenyon, Henry van den Bedem","doi":"10.1021/acs.jmedchem.4c01763","DOIUrl":null,"url":null,"abstract":"Commercially available, synthesis-on-demand virtual libraries contain upward of trillions of readily synthesizable compounds for drug discovery campaigns. These libraries are a critical resource for rapid cycles of in silico discovery, property optimization and in vitro validation. However, as these libraries continue to grow exponentially in size, traditional search strategies encounter significant limitations. Here we present NeuralGenThesis (NGT), an efficient reinforcement learning approach to generate compounds from ultralarge libraries that satisfy user-specified constraints. Our method first trains a generative model over a virtual library and subsequently trains a normalizing flow to learn a distribution over latent space that decodes constraint-satisfying compounds. NGT allows multiple constraints simultaneously without dictating how molecular properties are calculated. Using NGT, we generated potent and selective inhibitors for the melanocortin-2 receptor (MC2R) from a three trillion compound library. NGT offers a powerful and scalable solution for navigating ultralarge virtual libraries, accelerating drug discovery efforts.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NGT: Generative AI with Synthesizability Guarantees Discovers MC2R Inhibitors from a Tera-Scale Virtual Screen\",\"authors\":\"Saulo H. P de Oliveira, Aryan Pedawi, Victor Kenyon, Henry van den Bedem\",\"doi\":\"10.1021/acs.jmedchem.4c01763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercially available, synthesis-on-demand virtual libraries contain upward of trillions of readily synthesizable compounds for drug discovery campaigns. These libraries are a critical resource for rapid cycles of in silico discovery, property optimization and in vitro validation. However, as these libraries continue to grow exponentially in size, traditional search strategies encounter significant limitations. Here we present NeuralGenThesis (NGT), an efficient reinforcement learning approach to generate compounds from ultralarge libraries that satisfy user-specified constraints. Our method first trains a generative model over a virtual library and subsequently trains a normalizing flow to learn a distribution over latent space that decodes constraint-satisfying compounds. NGT allows multiple constraints simultaneously without dictating how molecular properties are calculated. Using NGT, we generated potent and selective inhibitors for the melanocortin-2 receptor (MC2R) from a three trillion compound library. NGT offers a powerful and scalable solution for navigating ultralarge virtual libraries, accelerating drug discovery efforts.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01763\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01763","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

商业化的按需合成虚拟库包含多达数万亿个可随时合成的化合物,用于药物发现活动。这些文库是进行快速硅学发现、性质优化和体外验证的重要资源。然而,随着这些库的规模不断呈指数级增长,传统的搜索策略遇到了很大的局限性。在此,我们介绍一种高效的强化学习方法 NeuralGenThesis (NGT),用于从超大型化合物库中生成满足用户指定约束条件的化合物。我们的方法首先在虚拟库上训练一个生成模型,然后训练一个归一化流程,学习潜空间的分布,从而解码出满足约束条件的化合物。NGT 允许同时使用多个约束条件,而不会影响分子特性的计算。利用 NGT,我们从三万亿个化合物库中生成了对黑皮质素-2 受体(MC2R)有效的选择性抑制剂。NGT 为浏览超大型虚拟化合物库提供了一个功能强大、可扩展的解决方案,从而加快了药物发现工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NGT: Generative AI with Synthesizability Guarantees Discovers MC2R Inhibitors from a Tera-Scale Virtual Screen

NGT: Generative AI with Synthesizability Guarantees Discovers MC2R Inhibitors from a Tera-Scale Virtual Screen
Commercially available, synthesis-on-demand virtual libraries contain upward of trillions of readily synthesizable compounds for drug discovery campaigns. These libraries are a critical resource for rapid cycles of in silico discovery, property optimization and in vitro validation. However, as these libraries continue to grow exponentially in size, traditional search strategies encounter significant limitations. Here we present NeuralGenThesis (NGT), an efficient reinforcement learning approach to generate compounds from ultralarge libraries that satisfy user-specified constraints. Our method first trains a generative model over a virtual library and subsequently trains a normalizing flow to learn a distribution over latent space that decodes constraint-satisfying compounds. NGT allows multiple constraints simultaneously without dictating how molecular properties are calculated. Using NGT, we generated potent and selective inhibitors for the melanocortin-2 receptor (MC2R) from a three trillion compound library. NGT offers a powerful and scalable solution for navigating ultralarge virtual libraries, accelerating drug discovery efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信