Saulo H. P de Oliveira, Aryan Pedawi, Victor Kenyon, Henry van den Bedem
{"title":"NGT:具有可合成性保证的生成式人工智能从大规模虚拟筛选中发现 MC2R 抑制剂","authors":"Saulo H. P de Oliveira, Aryan Pedawi, Victor Kenyon, Henry van den Bedem","doi":"10.1021/acs.jmedchem.4c01763","DOIUrl":null,"url":null,"abstract":"Commercially available, synthesis-on-demand virtual libraries contain upward of trillions of readily synthesizable compounds for drug discovery campaigns. These libraries are a critical resource for rapid cycles of in silico discovery, property optimization and in vitro validation. However, as these libraries continue to grow exponentially in size, traditional search strategies encounter significant limitations. Here we present NeuralGenThesis (NGT), an efficient reinforcement learning approach to generate compounds from ultralarge libraries that satisfy user-specified constraints. Our method first trains a generative model over a virtual library and subsequently trains a normalizing flow to learn a distribution over latent space that decodes constraint-satisfying compounds. NGT allows multiple constraints simultaneously without dictating how molecular properties are calculated. Using NGT, we generated potent and selective inhibitors for the melanocortin-2 receptor (MC2R) from a three trillion compound library. NGT offers a powerful and scalable solution for navigating ultralarge virtual libraries, accelerating drug discovery efforts.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NGT: Generative AI with Synthesizability Guarantees Discovers MC2R Inhibitors from a Tera-Scale Virtual Screen\",\"authors\":\"Saulo H. P de Oliveira, Aryan Pedawi, Victor Kenyon, Henry van den Bedem\",\"doi\":\"10.1021/acs.jmedchem.4c01763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercially available, synthesis-on-demand virtual libraries contain upward of trillions of readily synthesizable compounds for drug discovery campaigns. These libraries are a critical resource for rapid cycles of in silico discovery, property optimization and in vitro validation. However, as these libraries continue to grow exponentially in size, traditional search strategies encounter significant limitations. Here we present NeuralGenThesis (NGT), an efficient reinforcement learning approach to generate compounds from ultralarge libraries that satisfy user-specified constraints. Our method first trains a generative model over a virtual library and subsequently trains a normalizing flow to learn a distribution over latent space that decodes constraint-satisfying compounds. NGT allows multiple constraints simultaneously without dictating how molecular properties are calculated. Using NGT, we generated potent and selective inhibitors for the melanocortin-2 receptor (MC2R) from a three trillion compound library. NGT offers a powerful and scalable solution for navigating ultralarge virtual libraries, accelerating drug discovery efforts.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01763\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01763","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
NGT: Generative AI with Synthesizability Guarantees Discovers MC2R Inhibitors from a Tera-Scale Virtual Screen
Commercially available, synthesis-on-demand virtual libraries contain upward of trillions of readily synthesizable compounds for drug discovery campaigns. These libraries are a critical resource for rapid cycles of in silico discovery, property optimization and in vitro validation. However, as these libraries continue to grow exponentially in size, traditional search strategies encounter significant limitations. Here we present NeuralGenThesis (NGT), an efficient reinforcement learning approach to generate compounds from ultralarge libraries that satisfy user-specified constraints. Our method first trains a generative model over a virtual library and subsequently trains a normalizing flow to learn a distribution over latent space that decodes constraint-satisfying compounds. NGT allows multiple constraints simultaneously without dictating how molecular properties are calculated. Using NGT, we generated potent and selective inhibitors for the melanocortin-2 receptor (MC2R) from a three trillion compound library. NGT offers a powerful and scalable solution for navigating ultralarge virtual libraries, accelerating drug discovery efforts.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.