具有超导性的非范-德-瓦尔斯二维配位聚合物的合成与结构

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhichao Pan, Xing Huang, Yunlong Fan, Shaoze Wang, Yiyu Liu, Xuzhong Cong, Tingsong Zhang, Shichao Qi, Ying Xing, Yu-Qing Zheng, Jian Li, Xiaoming Zhang, Wei Xu, Lei Sun, Jian Wang, Jin-Hu Dou
{"title":"具有超导性的非范-德-瓦尔斯二维配位聚合物的合成与结构","authors":"Zhichao Pan, Xing Huang, Yunlong Fan, Shaoze Wang, Yiyu Liu, Xuzhong Cong, Tingsong Zhang, Shichao Qi, Ying Xing, Yu-Qing Zheng, Jian Li, Xiaoming Zhang, Wei Xu, Lei Sun, Jian Wang, Jin-Hu Dou","doi":"10.1038/s41467-024-53786-1","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional conjugated coordination polymers exhibit remarkable charge transport properties, with copper-based benzenehexathiol (Cu-BHT) being a rare superconductor. However, the atomic structure of Cu-BHT has remained unresolved, hindering a deeper understanding of the superconductivity in such materials. Here, we show the synthesis of single crystals of Cu<sub>3</sub>BHT with high crystallinity, revealing a quasi-two-dimensional kagome structure with non-van der Waals interlayer Cu-S covalent bonds. These crystals exhibit intrinsic metallic behavior, with conductivity reaching 10<sup>3 </sup>S/cm at 300 K and 10<sup>4 </sup>S/cm at 2 K. Notably, superconductivity in Cu<sub>3</sub>BHT crystals is observed at 0.25 K, attributed to enhanced electron-electron interactions and electron-phonon coupling in the non-van der Waals structure. The discovery of this clear correlation between atomic-level crystal structure and electrical properties provides a crucial foundation for advancing superconductor coordination polymers, with potential to revolutionize future quantum devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and structure of a non-van-der-Waals two-dimensional coordination polymer with superconductivity\",\"authors\":\"Zhichao Pan, Xing Huang, Yunlong Fan, Shaoze Wang, Yiyu Liu, Xuzhong Cong, Tingsong Zhang, Shichao Qi, Ying Xing, Yu-Qing Zheng, Jian Li, Xiaoming Zhang, Wei Xu, Lei Sun, Jian Wang, Jin-Hu Dou\",\"doi\":\"10.1038/s41467-024-53786-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional conjugated coordination polymers exhibit remarkable charge transport properties, with copper-based benzenehexathiol (Cu-BHT) being a rare superconductor. However, the atomic structure of Cu-BHT has remained unresolved, hindering a deeper understanding of the superconductivity in such materials. Here, we show the synthesis of single crystals of Cu<sub>3</sub>BHT with high crystallinity, revealing a quasi-two-dimensional kagome structure with non-van der Waals interlayer Cu-S covalent bonds. These crystals exhibit intrinsic metallic behavior, with conductivity reaching 10<sup>3 </sup>S/cm at 300 K and 10<sup>4 </sup>S/cm at 2 K. Notably, superconductivity in Cu<sub>3</sub>BHT crystals is observed at 0.25 K, attributed to enhanced electron-electron interactions and electron-phonon coupling in the non-van der Waals structure. The discovery of this clear correlation between atomic-level crystal structure and electrical properties provides a crucial foundation for advancing superconductor coordination polymers, with potential to revolutionize future quantum devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53786-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53786-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二维共轭配位聚合物具有显著的电荷传输特性,其中铜基苯并六硫醇(Cu-BHT)是一种罕见的超导体。然而,Cu-BHT 的原子结构一直悬而未决,阻碍了对此类材料超导性的深入理解。在这里,我们展示了高结晶度的 Cu3BHT 单晶的合成,揭示了具有非范德华层间 Cu-S 共价键的准二维卡戈米结构。值得注意的是,在 0.25 K 的 Cu3BHT 晶体中观察到了超导现象,这归因于非范德华结构中增强的电子-电子相互作用和电子-声子耦合。发现原子级晶体结构与电学特性之间的这种明显相关性,为推进超导体配位聚合物的发展奠定了重要基础,有望彻底改变未来的量子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis and structure of a non-van-der-Waals two-dimensional coordination polymer with superconductivity

Synthesis and structure of a non-van-der-Waals two-dimensional coordination polymer with superconductivity

Two-dimensional conjugated coordination polymers exhibit remarkable charge transport properties, with copper-based benzenehexathiol (Cu-BHT) being a rare superconductor. However, the atomic structure of Cu-BHT has remained unresolved, hindering a deeper understanding of the superconductivity in such materials. Here, we show the synthesis of single crystals of Cu3BHT with high crystallinity, revealing a quasi-two-dimensional kagome structure with non-van der Waals interlayer Cu-S covalent bonds. These crystals exhibit intrinsic metallic behavior, with conductivity reaching 103 S/cm at 300 K and 104 S/cm at 2 K. Notably, superconductivity in Cu3BHT crystals is observed at 0.25 K, attributed to enhanced electron-electron interactions and electron-phonon coupling in the non-van der Waals structure. The discovery of this clear correlation between atomic-level crystal structure and electrical properties provides a crucial foundation for advancing superconductor coordination polymers, with potential to revolutionize future quantum devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信