Xiaoxue Qin, Ariana Annie Chen, Jiahuiyu Fang, Pranab Sarker, Mark J. Uline, Tao Wei
{"title":"用 TMAO 和短碳氟化合物官能化的两性聚合物刷表面的水合和防生物污垢行为的原子模拟","authors":"Xiaoxue Qin, Ariana Annie Chen, Jiahuiyu Fang, Pranab Sarker, Mark J. Uline, Tao Wei","doi":"10.1021/acs.langmuir.4c03218","DOIUrl":null,"url":null,"abstract":"Developing fouling-resistant materials is of paramount interest in marine industries and biomedical applications. In this work, we studied the interfacial hydration and surface–protein interactions of the amphiphilic brush surface functionalized with hybrid hydrophilic trimethylamine <i>N</i>-oxide (TMAO) and hydrophobic pentafluoroethyl groups using a combination of atomistic molecular dynamics simulations and free-energy computations. Our results show that while the interfacial hydration density of the amphiphilic surface slightly decreases with the introduction of small fluorocarbons compared to that of the pure TMAO-functionalized surface, the amphiphilic surface remains relatively strong in resisting protein adsorption. The nanosized clustering of hydrophobic fluorine atoms on the top of the amphiphilic brush surface introduces weak protein adsorption; however, due to the strong interfacial hydration and weak hydrophobic interaction, the amphiphilic surface exhibits sufficient antibiofouling activities. Our fundamental studies will be critical for the discovery of marine fouling-resistant coating surfaces.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic Simulations of Hydration and Antibiofouling Behavior of Amphiphilic Polymer Brush Surfaces Functionalized with TMAO and Short Fluorocarbon\",\"authors\":\"Xiaoxue Qin, Ariana Annie Chen, Jiahuiyu Fang, Pranab Sarker, Mark J. Uline, Tao Wei\",\"doi\":\"10.1021/acs.langmuir.4c03218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing fouling-resistant materials is of paramount interest in marine industries and biomedical applications. In this work, we studied the interfacial hydration and surface–protein interactions of the amphiphilic brush surface functionalized with hybrid hydrophilic trimethylamine <i>N</i>-oxide (TMAO) and hydrophobic pentafluoroethyl groups using a combination of atomistic molecular dynamics simulations and free-energy computations. Our results show that while the interfacial hydration density of the amphiphilic surface slightly decreases with the introduction of small fluorocarbons compared to that of the pure TMAO-functionalized surface, the amphiphilic surface remains relatively strong in resisting protein adsorption. The nanosized clustering of hydrophobic fluorine atoms on the top of the amphiphilic brush surface introduces weak protein adsorption; however, due to the strong interfacial hydration and weak hydrophobic interaction, the amphiphilic surface exhibits sufficient antibiofouling activities. Our fundamental studies will be critical for the discovery of marine fouling-resistant coating surfaces.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03218\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03218","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomistic Simulations of Hydration and Antibiofouling Behavior of Amphiphilic Polymer Brush Surfaces Functionalized with TMAO and Short Fluorocarbon
Developing fouling-resistant materials is of paramount interest in marine industries and biomedical applications. In this work, we studied the interfacial hydration and surface–protein interactions of the amphiphilic brush surface functionalized with hybrid hydrophilic trimethylamine N-oxide (TMAO) and hydrophobic pentafluoroethyl groups using a combination of atomistic molecular dynamics simulations and free-energy computations. Our results show that while the interfacial hydration density of the amphiphilic surface slightly decreases with the introduction of small fluorocarbons compared to that of the pure TMAO-functionalized surface, the amphiphilic surface remains relatively strong in resisting protein adsorption. The nanosized clustering of hydrophobic fluorine atoms on the top of the amphiphilic brush surface introduces weak protein adsorption; however, due to the strong interfacial hydration and weak hydrophobic interaction, the amphiphilic surface exhibits sufficient antibiofouling activities. Our fundamental studies will be critical for the discovery of marine fouling-resistant coating surfaces.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).